Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform

LOWMAN, NICHOLAS K. Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform. (Under the direction of Mark Hoefer.) This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we identify four new admissibility criteria required for proper application of the Whitham-El DSW closure method for a general class of scalar dispersive hydrodynamic equations. Further, we explore regularization distinguishing characteristics of dissipative versus dispersive smoothing in a bidirectional system, Fermi gas at unitarity, in which the appropriate physical mechanism is unclear. It is shown that key differences in the resolution of nonlinear wave breaking allow one to design regularization determining experiments.

[1]  David W. McLaughlin,et al.  Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation , 1980 .

[2]  David P. Mason,et al.  Rarefactive solitary waves in two-phase fluid flow of compacting media , 1992 .

[3]  S. Gandolfi,et al.  Resonantly interacting fermions in a box. , 2010, Physical review letters.

[4]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[5]  Gennady El,et al.  Unsteady undular bores in fully nonlinear shallow-water theory , 2005, nlin/0507029.

[6]  Rita McCardell Doerr,et al.  Generation , 2015, Aristotle on Substance.

[7]  Mark J. Ablowitz,et al.  Interactions of dispersive shock waves , 2007 .

[8]  I Coddington,et al.  Observations on sound propagation in rapidly rotating Bose-Einstein condensates. , 2005, Physical review letters.

[9]  K. Helfrich,et al.  Solitary waves on conduits of buoyant fluid in a more viscous fluid , 1990 .

[10]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .

[11]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[12]  R. Grimshaw,et al.  Conduit solitary waves in a visco-elastic medium , 1992 .

[13]  F. Serre,et al.  CONTRIBUTION À L'ÉTUDE DES ÉCOULEMENTS PERMANENTS ET VARIABLES DANS LES CANAUX , 1953 .

[14]  A. Schirotzek,et al.  Vortices and superfluidity in a strongly interacting Fermi gas , 2005, Nature.

[15]  Victor Barcilon,et al.  Nonlinear waves in compacting media , 1986, Journal of Fluid Mechanics.

[16]  N. F. Smyth,et al.  Transcritical shallow-water flow past topography: finite-amplitude theory , 2009, Journal of Fluid Mechanics.

[17]  D. Feldman,et al.  Experimental observations of soliton wave trains in electron beams. , 2013, Physical review letters.

[18]  A. Abanov,et al.  Hydrodynamics of cold atomic gases in the limit of weak nonlinearity, dispersion and dissipation , 2012, 1205.5917.

[19]  Grischkowsky,et al.  Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. , 1989, Physical review letters.

[20]  L. Payne,et al.  The Stokes flow problem for a class of axially symmetric bodies , 1960, Journal of Fluid Mechanics.

[21]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[22]  J. D. Pearce,et al.  Dispersive dam-break and lock-exchange flows in a two-layer fluid , 2011, Journal of Fluid Mechanics.

[23]  Yuji Kodama,et al.  On the Whitham Equations for the Defocusing Complex Modified KdV Equation , 2007, SIAM J. Math. Anal..

[24]  A. Mirlin,et al.  Dynamics of waves in one-dimensional electron systems: Density oscillations driven by population inversion , 2012, 1209.1079.

[25]  S. Harris Conservation laws for a nonlinear wave equation , 1996 .

[26]  Giancarlo Ruocco,et al.  Shocks in nonlocal media. , 2007, Physical review letters.

[27]  Frank M. Richter,et al.  Dynamical Models for Melt Segregation from a Deformable Matrix , 1984, The Journal of Geology.

[28]  Andrew C. Fowler,et al.  A mathematical model of magma transport in the asthenosphere , 1985 .

[29]  T. Benjamin Internal waves of permanent form in fluids of great depth , 1967, Journal of Fluid Mechanics.

[30]  S. Burger,et al.  Dark solitons in Bose-Einstein condensates , 1999, QELS 2000.

[31]  Gideon Simpson,et al.  Degenerate dispersive equations arising in the study of magma dynamics , 2006, nlin/0607040.

[32]  M. Ablowitz,et al.  Interactions and asymptotics of dispersive shock waves – Korteweg–de Vries equation , 2013, 1301.1032.

[33]  M. Ablowitz,et al.  Soliton generation and multiple phases in dispersive shock and rarefaction wave interaction. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  L. Glazman,et al.  Quantum ripples over a semiclassical shock. , 2012, Physical review letters.

[35]  Tamara Grava,et al.  The generation, propagation, and extinction of multiphases in the KdV zero‐dispersion limit , 2002 .

[36]  J. Whitehead,et al.  Dynamics of laboratory diapir and plume models , 1975 .

[37]  Stephanos Venakides,et al.  The zero dispersion limit of the korteweg‐de vries equation for initial potentials with non‐trivial reflection coefficient , 1985 .

[38]  W. Bakr,et al.  Heavy solitons in a fermionic superfluid , 2013, Nature.

[39]  G. Fibich Stability of Solitary Waves , 2015 .

[40]  Jason W. Fleischer,et al.  Dispersive, superfluid-like shock waves in nonlinear optics: Properties & interactions , 2007, 2007 Quantum Electronics and Laser Science Conference.

[41]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[42]  G. El,et al.  Kinetic equation for a dense soliton gas. , 2005, Physical review letters.

[43]  H. Ikezi,et al.  Observation of Collisionless Electrostatic Shocks , 1970 .

[44]  Peter A. Clarkson,et al.  Painlevé Analysis and Similarity Reductions for the Magma Equation , 2006, nlin/0610011.

[45]  J. Satsuma,et al.  Properties of the Magma and Modified Magma Equations , 1990 .

[46]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[47]  Philippe Guyenne,et al.  Solitary water wave interactions , 2006 .

[48]  I. Coddington,et al.  Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics , 2006 .

[49]  M. A. Hoefer,et al.  Shock Waves in Dispersive Eulerian Fluids , 2013, J. Nonlinear Sci..

[50]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[51]  G. El,et al.  Resolution of a shock in hyperbolic systems modified by weak dispersion. , 2005, Chaos.

[52]  A M Kamchatnov,et al.  Undular bore theory for the Gardner equation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Nicholas K. Lowman,et al.  Dispersive shock waves in viscously deformable media , 2013, Journal of Fluid Mechanics.

[54]  V. G. Sala,et al.  Polariton Superfluids Reveal Quantum Hydrodynamic Solitons , 2011, Science.

[55]  N. F. Smyth,et al.  Hydraulic Jump and Undular Bore Formation on a Shelf Break , 1988 .

[56]  F. Toigo,et al.  Extended Thomas-Fermi density functional for the unitary Fermi gas , 2008, 0809.1820.

[57]  Jason W Fleischer,et al.  Dispersive shock waves with nonlocal nonlinearity. , 2007, Optics letters.

[58]  Victor Barcilon,et al.  Solitary waves in magma dynamics , 1989, Journal of Fluid Mechanics.

[59]  M. Spiegelman Flow in deformable porous media. I: Simple analysis , 1993 .

[60]  Aurel Bulgac,et al.  Quantum shock waves and domain walls in the real-time dynamics of a superfluid unitary Fermi gas. , 2011, Physical review letters.

[61]  Sandro Stringari,et al.  Theory of ultracold atomic Fermi gases , 2007, 0706.3360.

[62]  Randall G. Hulet,et al.  Formation and propagation of matter-wave soliton trains , 2002, Nature.

[63]  Stephanos Venakides,et al.  The Small Dispersion Limit of the Korteweg-De Vries Equation , 1987 .

[64]  Fei-Ran Tian,et al.  Self-similar solutions of the non-strictly hyperbolic Whitham equations , 2006 .

[65]  Gideon Simpson,et al.  Asymptotic Stability of Ascending Solitary Magma Waves , 2008, SIAM J. Math. Anal..

[66]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[67]  D. McKenzie,et al.  The Generation and Compaction of Partially Molten Rock , 1984 .

[68]  S Trillo,et al.  Measurement of scaling laws for shock waves in thermal nonlocal media. , 2012, Optics letters.

[69]  T. Elperin,et al.  Nondissipative shock waves in two-phase flows , 1994 .

[70]  John E. Thomas,et al.  Observation of shock waves in a strongly interacting Fermi gas. , 2010, Physical review letters.

[71]  M. Hoefer,et al.  Fermionic shock waves: Distinguishing dissipative versus dispersive regularizations , 2013 .

[72]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[73]  John W. Miles,et al.  Obliquely interacting solitary waves , 1977, Journal of Fluid Mechanics.

[74]  G. Whitham,et al.  Non-linear dispersive waves , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[75]  N. F. Smyth,et al.  Modelling the morning glory of the Gulf of Carpentaria , 2002, Journal of Fluid Mechanics.

[76]  S. Stringari,et al.  Collective oscillations of a one-dimensional trapped Bose-Einstein gas , 2002 .

[77]  L. Salasnich Supersonic and subsonic shock waves in the unitary Fermi gas , 2011, 1110.0311.

[78]  Nicholas K. Lowman,et al.  Interactions of large amplitude solitary waves in viscous fluid conduits , 2013, Journal of Fluid Mechanics.

[79]  A. T. Doodson Tidal Bores , 1934, Nature.

[80]  M. J. Lighthill,et al.  Contributions to the Theory of Waves in Non-linear Dispersive Systems , 1965 .

[81]  Ulrich R. Christensen,et al.  Solitary wave propagation in a fluid conduit within a viscous matrix , 1986 .

[82]  J. Chang,et al.  Formation of dispersive shock waves by merging and splitting Bose-Einstein condensates. , 2008, Physical review letters.

[83]  Haohua Tu,et al.  Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. , 2012, Optics letters.

[84]  Mark Ablowitz,et al.  Dispersive shock waves , 2009, Scholarpedia.

[85]  P. M. Naghdi,et al.  A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.

[86]  K. Schmidt,et al.  Auxiliary-field quantum Monte Carlo method for strongly paired fermions , 2011, 1107.5848.

[87]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[88]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[89]  Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions , 2010 .

[90]  Gideon Simpson,et al.  Solitary Wave Benchmarks in Magma Dynamics , 2010, J. Sci. Comput..

[91]  A. Scotti,et al.  Generation and propagation of nonlinear internal waves in Massachusetts Bay , 2007 .

[92]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[93]  Gideon Simpson,et al.  A Multiscale Model of Partial Melts 1: Effective Equations , 2009, 0903.0162.

[94]  J. Whitehead Instabilities of fluid conduits in a flowing earth — are plates lubricated by the asthenosphere? , 1982 .

[95]  Timothy R. Marchant,et al.  Approximate solutions for magmon propagation from a reservoir , 2005 .

[96]  David J. Stevenson,et al.  Observations of solitary waves in a viscously deformable pipe , 1986, Nature.

[97]  Hiroaki Ono Algebraic Solitary Waves in Stratified Fluids , 1975 .

[98]  Nicholas K. Lowman,et al.  Dispersive hydrodynamics in viscous fluid conduits. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  Haibin Wu,et al.  Searching for perfect fluids: quantum viscosity in a universal Fermi gas , 2011, 1105.2496.

[100]  T. Maxworthy,et al.  Experiments on strong interactions between solitary waves , 1978, Journal of Fluid Mechanics.

[101]  C. Su,et al.  Collisions between two solitary waves. Part 2. A numerical study , 1982, Journal of Fluid Mechanics.

[102]  Jason W Fleischer,et al.  Dispersive shock waves in nonlinear arrays. , 2007, Physical review letters.

[103]  F. Toigo,et al.  Shock waves in strongly interacting Fermi gas from time-dependent density functional calculations , 2012, 1206.0568.

[104]  Marc Spiegelman,et al.  Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media , 2001 .

[105]  Ricardo Carretero-González,et al.  Emergent Nonlinear Phenomena in Bose-Einstein Condensates , 2008 .

[106]  Zachary Dutton,et al.  Observation of Quantum Shock Waves Created with Ultra- Compressed Slow Light Pulses in a Bose-Einstein Condensate , 2001, Science.

[107]  Ines Fischer,et al.  Modulated Waves Theory And Applications , 2016 .

[108]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[109]  D. Kinderlehrer,et al.  Oscillation theory, computation, and methods of compensated compactness , 1986 .

[110]  J. Chang,et al.  Matter–wave interference in Bose–Einstein condensates: A dispersive hydrodynamic perspective☆ , 2009 .

[111]  David J. Stevenson,et al.  Magma ascent by porous flow , 1986 .

[112]  H. Rubinsztein-Dunlop,et al.  Observation of shock waves in a large Bose-Einstein condensate , 2009, 0907.3989.

[113]  R. Grimshaw,et al.  Two-soliton interaction as an elementary act of soliton turbulence in integrable systems , 2013 .

[114]  John Whitehead,et al.  The Korteweg‐deVries equation from laboratory conduit and magma migration equations , 1986 .

[115]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[116]  E. Rolley,et al.  The hydraulic jump and ripples in liquid helium , 2007 .

[117]  Matthew G. Knepley,et al.  Numerical simulation of geodynamic processes with the Portable Extensible Toolkit for Scientific Computation , 2007 .

[118]  Marco Peccianti,et al.  Observation of a gradient catastrophe generating solitons. , 2008, Physical review letters.

[119]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[120]  W. R. Gardner Physics of Flow through Porous Media , 1961 .

[121]  R. W. Means,et al.  Shocklike solutions of the Korteweg-de Vries equation , 1977 .