Constraints and AI planning

Tackling real-world planning problems often requires considering various types of constraints, which can range from simple numerical comparators to complex resources. This article provides an overview of techniques to deal with such constraints by expressing planning within general constraint-solving frameworks. Our goal here is to explore the interplay of constraints and planning, highlighting the differences between propositional satisfiability (SAT), integer programming (IP), and constraint programming (CP), and discuss their potential in expressing and solving AI planning problems.

[1]  Jussi Rintanen,et al.  Constructing Conditional Plans by a Theorem-Prover , 1999, J. Artif. Intell. Res..

[2]  Eugene C. Freuder,et al.  Inference-Based Constraint Satisfaction Supports Explanation , 1996, AAAI/IAAI, Vol. 1.

[3]  James A. Hendler,et al.  Readings in Planning , 1994 .

[4]  Austin Tate,et al.  O-Plan2: an Open Architecture for Command, Planning and Control , 2006 .

[5]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[6]  Andrew J. Davenport,et al.  GENET: A Connectionist Architecture for Solving Constraint Satisfaction Problems by Iterative Improvement , 1994, AAAI.

[7]  Nathanael Hyafil,et al.  Conformant Probabilistic Planning via CSPs , 2003, ICAPS.

[8]  Peter van Beek,et al.  CPlan: A Constraint Programming Approach to Planning , 1999, AAAI/IAAI.

[9]  Matthew L. Ginsberg,et al.  Do Computers Need Common Sense? , 1996, KR.

[10]  Robert Fourer,et al.  Modeling languages versus matrix generators for linear programming , 1983, TOMS.

[11]  Vassilios Liatsos,et al.  Scalability in planning with limited resources , 2001 .

[12]  Z. Ruttkay Fuzzy constraint satisfaction , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[13]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[14]  James A. Hendler,et al.  UMCP: A Sound and Complete Procedure for Hierarchical Task-network Planning , 1994, AIPS.

[15]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[16]  Craig Boutilier,et al.  Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.

[17]  Malik Ghallab,et al.  Planning with Sharable Resource Constraints , 1995, IJCAI.

[18]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[19]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[20]  Norman M. Sadeh,et al.  Variable and Value Ordering Heuristics for the Job Shop Scheduling Constraint Satisfaction Problem , 1996, Artif. Intell..

[21]  John Levine,et al.  Using AI Planning Technology for Army Small Unit Operations , 2000, AIPS.

[22]  Henry A. Kautz,et al.  BLACKBOX: A New Approach to the Application of Theorem Proving to Problem Solving , 1998 .

[23]  Eugene C. Freuder,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[24]  Chia-Hoang Lee,et al.  Comments on Mohr and Henderson's Path Consistency Algorithm , 1988, Artif. Intell..

[25]  C.A.C. Kuip,et al.  Algebraic languages for mathematical programming , 1993 .

[26]  Nicola Muscettola,et al.  HSTS: Integrating Planning and Scheduling , 1993 .

[27]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[28]  Toby Walsh,et al.  Stochastic Constraint Programming , 2002, ECAI.

[29]  Matthew W. Moskewicz,et al.  Cha : Engineering an e cient SAT solver , 2001, DAC 2001.

[30]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[31]  Craig Boutilier,et al.  Stochastic dynamic programming with factored representations , 2000, Artif. Intell..

[32]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[33]  Michela Milano,et al.  The Benefits of Global Constraints for the Integration of Constraint Programming and Integer Programming , 2000 .

[34]  Martha E. Pollack,et al.  Passive and active decision postponement in plan generation , 1996 .

[35]  Onn Shehory,et al.  Interleaving Planning and Execution in a Multiagent Team Planning Environment , 2000, Electron. Trans. Artif. Intell..

[36]  Austin Tate,et al.  Generating Project Networks , 1977, IJCAI.

[37]  Aaron Sloman,et al.  The Emperor's Real Mind: Review of Roger Penrose'sThe Emperor's New Mind: Concerning Computers, Minds and the Laws of Physics , 1992, Artif. Intell..

[38]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[39]  Alexander Nareyek Using global constraints for local search , 1998, Constraint Programming and Large Scale Discrete Optimization.

[40]  Brian Falkenhainer,et al.  Dynamic Constraint Satisfaction Problems , 1990, AAAI.

[41]  Daniel S. Weld,et al.  The LPSAT Engine & Its Application to Resource Planning , 1999, IJCAI.

[42]  James A. Hendler,et al.  HTN Planning: Complexity and Expressivity , 1994, AAAI.

[43]  David E. Wilkins,et al.  Practical planning - extending the classical AI planning paradigm , 1989, Morgan Kaufmann series in representation and reasoning.

[44]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[45]  Barry Richards,et al.  parcPlan: A Planning Architecture with Parallel Actions, Resources and Constraints , 1994, ISMIS.

[46]  Philippe Laborie,et al.  Algorithms for propagating resource constraints in AI planning and scheduling: Existing approaches and new results , 2003, Artif. Intell..

[47]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..

[48]  Alexander Nareyek,et al.  Constraint-Based Agents-An Architecture for Constraint-Based Modeling and Local-Search-Based Reasoni , 2001 .

[49]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[50]  Fahiem Bacchus,et al.  Generalizing GraphPlan by Formulating Planning as a CSP , 2003, IJCAI.

[51]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[52]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[53]  Robert P. Goldman,et al.  MACBeth: A Multi-Agent Constraint-Based Planner , 2000 .

[54]  Earl D. Sacerdoti,et al.  The Nonlinear Nature of Plans , 1975, IJCAI.

[55]  Thomas Schiex,et al.  Solution Reuse in Dynamic Constraint Satisfaction Problems , 1994, AAAI.

[56]  Jussi Rintanen,et al.  Numeric State Variables in Constraint-Based Planning , 1999, ECP.

[57]  Makoto Yokoo,et al.  Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-agent Systems , 2000 .

[58]  Subbarao Kambhampati,et al.  Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP , 2001, Artif. Intell..

[59]  Makoto Yokoo,et al.  Distributed Constraint Satisfaction , 2000, Springer Series on Agent Technology.

[60]  Austin Tate,et al.  O Plan an Open Architecture for Command Planning and Control , 2006 .

[61]  Richard J. Wallace,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[62]  Jeremy Frank,et al.  Constraint-Based Attribute and Interval Planning , 2003, Constraints.

[63]  Richard J. Wallace,et al.  Constraint Programming and Large Scale Discrete Optimization , 2001 .

[64]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[65]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[66]  Austin Tate,et al.  O-Plan: The open Planning Architecture , 1991, Artif. Intell..

[67]  G. Nemhauser,et al.  Integer Programming , 2020 .

[68]  Eric Jacopin,et al.  On the Path from Classical Planning to Arithmetic Constraint Satisfaction , 2003 .

[69]  J. Meeraus A. Bisschop,et al.  ON THE DEVELOPMENT OF A GENERAL ALGEBRAIC MODELING SYSTEM IN A STRATEGIC PLANNING ENVIRONMENT , 1982 .

[70]  Peter van Beek,et al.  A Theoretical Evaluation of Selected Backtracking Algorithms , 1995, IJCAI.

[71]  Christian Bessiere,et al.  Using Inference to Reduce Arc Consistency Computation , 1995, IJCAI.

[72]  John N. Hooker,et al.  Optimization and , 2000 .

[73]  Philippe Refalo Tight Cooperation and Its Application in Piecewise Linear Optimization , 1999, CP.

[74]  Subbarao Kambhampati,et al.  Solving Planning-Graph by Compiling It into CSP , 2000, AIPS.

[75]  Daniel S. Weld,et al.  Temporal Planning with Continuous Change , 1994, AAAI.

[76]  Dana S. Nau,et al.  Applying integer programming to AI planning , 2000, The Knowledge Engineering Review.

[77]  Mark Stefik,et al.  Planning with Constraints (MOLGEN: Part 1) , 1981, Artif. Intell..