Super-resolution method using sparse regularization for point-spread function recovery

In large-scale spatial surveys, such as the forthcoming ESA Euclid mission, images may be undersampled due to the optical sensors sizes. Therefore, one may consider using a super-resolution (SR) method to recover aliased frequencies, prior to further analysis. This is particularly relevant for point-source images, which provide direct measurements of the instrument point-spread function (PSF). We introduce SPRITE, SParse Recovery of InsTrumental rEsponse, which is an SR algorithm using a sparse analysis prior. We show that such a prior provides significant improvements over existing methods, especially on low SNR PSFs.

[1]  Heinz H. Bauschke,et al.  Fixed-Point Algorithms for Inverse Problems in Science and Engineering , 2011, Springer Optimization and Its Applications.

[2]  Mike E. Davies,et al.  IEEE International Conference on Acoustics Speech and Signal Processing , 2008 .

[3]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[4]  Jean-Luc Starck,et al.  GLIMPSE: accurate 3D weak lensing reconstructions using sparsity , 2013, 1308.1353.

[5]  K L Baker,et al.  Iteratively weighted centroiding for Shack-Hartmann wave-front sensors. , 2007, Optics express.

[6]  Brian J. Thompson Introduction to Fourier Optics. Joseph W. Goodman. McGraw-Hill, New York, 1968. xiv + 287 pp., illus. $13.50. McGraw-Hill Physical and Quantum Electronics Series , 1969 .

[7]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[8]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[9]  A. Amara,et al.  Point spread function calibration requirements for dark energy from cosmic shear , 2007, 0711.4886.

[10]  O. Scherzer Handbook of mathematical methods in imaging , 2011 .

[11]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[12]  Y. Mellier,et al.  Euclid: Mapping the Geometry of the Dark Universe , 2012 .

[13]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[14]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[15]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[16]  Otmar Scherzer,et al.  Handbook of Mathematical Methods in Imaging , 2015, Handbook of Mathematical Methods in Imaging.

[17]  J. Amiaux,et al.  Defining a weak lensing experiment in space , 2012, 1210.7691.

[18]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[19]  Mohamed-Jalal Fadili,et al.  Astronomical Image Denoising Using Dictionary Learning , 2013, ArXiv.

[20]  David L. Donoho,et al.  WaveLab and Reproducible Research , 1995 .

[21]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[22]  Michael Elad,et al.  A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur , 2001, IEEE Trans. Image Process..