An Analytic Approach to a General Class of G/G/s Queueing Systems

We solve the queueing system Ck/Cm/s, where Ck is the class of Coxian probability density functions pdfs of order k, which is a subset of the pdfs that have a rational Laplace transform. We formulate the model as a continuous-time, infinite-space Markov chain by generalizing the method of stages. By using a generating function technique, we solve an infinite system of partial difference equations and find closed-form expressions for the system-size, general-time, prearrival, post-departure probability distributions and the usual performance measures. In particular, we prove that the probability of n customers being in the system, when it is saturated is a linear combination of geometric terms. The closed-form expressions involve a solution of a system of nonlinear equations that involves only the Laplace transforms of the interarrival and service time distributions. We conjecture that this result holds for a more general model. Following these theoretical results we propose an exact algorithm for finding the system-size distribution and the system's performance measures. We examine special cases and apply this method for numerically solving the C2/C2/s and Ek/C2/s queueing systems.

[1]  D. Cox A use of complex probabilities in the theory of stochastic processes , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Henk Tijms,et al.  Stochastic modelling and analysis: a computational approach , 1986 .

[3]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[4]  F. Hillier,et al.  Tables for Multiple-Server Queueing Systems Involving Erlang Distributions. , 1972 .

[5]  Philip M. Morse,et al.  Queues, Inventories, And Maintenance , 1958 .

[6]  Peter W. Jones,et al.  Stochastic Modelling and Analysis , 1988 .

[7]  O. Yu,et al.  Queueing tables and graphs , 1981 .

[8]  Per Hokstad,et al.  The steady-state solution of the M/K2/m queue , 1980, Advances in Applied Probability.

[9]  H. Störmer F. Pollaczek, Théorie Analytique des Problèmes Stochastiques Relatifs à un Groupe de Lignes Téléphoniques Avec Dispositif d' Attente. 115 S. Paris 1961. Gauthier‐Villars & Cie. Preis brosch , 1963 .

[10]  P. Hartman Ordinary Differential Equations , 1965 .

[11]  Leonard Kleinrock,et al.  Theory, Volume 1, Queueing Systems , 1975 .

[12]  Felix Pollaczek,et al.  SUMMARY OF ANALYTICAL THEORY OF THE QUEUEING PROBLEMS RELATING TO A GROUP OF TELEPHONE LINES WHERE CALLS ARE TREATED TO 'FIRST COME, FIRST SERVE' (THEORIE ANALYTIQUE DES PROBLEMES STOCHASTIQUES RELATIFS A UN GROUPE DE LIGNES TELEPHONIQUES AVEC DISPOSITIF D'ATTENTE), , 1963 .

[13]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[14]  David M. Lucantoni,et al.  Algorithms for the multi-server queue with phase type service , 1985 .

[15]  Jos H. A De Smit A numerical solution for the multi-server queue with hyper-exponential service times , 1983 .

[16]  Henk Tijms,et al.  Tables for M/G/c queuing systems with phase-type service , 1984 .

[17]  F. H. Jackson q-Difference Equations , 1910 .

[18]  U. Sumita,et al.  Waiting Time Distribution Response to Traffic Surges Via the Laguerre Transform , 1982 .

[19]  Dimitris Bertsimas An exact FCFS waiting time analysis for a general class of G/G/s queueing systems , 1988, Queueing Syst. Theory Appl..