Recent Advances in Catalytic Dearomative Hydroboration of N‐Heteroarenes

Catalytic dearomative reduction of N‐heteroarenes is of important transformations in organic synthesis as well as medicinal chemistry, since the reduced aza compounds such as dihydropyridines can be synthetic building blocks as well as structural motifs for bioactive natural products and pharmaceuticals. While hydrogenation and hydrosilylation are well‐utilized methods for such dearomative reduction of N‐heteroarenes, the dearomative hydroboration has recently emerged as a competent alternative with high selectivity and good functional group tolerance. This Minireview describes recent advances in the catalytic hydroboration of N‐heteroarenes. A diverse range of new catalytic systems will be detailed with strong emphasis on their unique working modes, which are closely related to chemo‐, regio‐ and stereooutcomes observed in the hydroboration of N‐heteroarenes.

[1]  Sehoon Park B(C 6 F 5 ) 3 ‐Catalyzed sp 3 C—Si Bond Forming Consecutive Reactions , 2019, Chinese Journal of Chemistry.

[2]  Jianghua He,et al.  Regioselective 1,2-hydroboration of N-heteroarenes using a potassium-based catalyst , 2019, Organic Chemistry Frontiers.

[3]  Sukbok Chang,et al.  Alkoxide-Promoted Selective Hydroboration of N-Heteroarenes: Pivotal Roles of in situ Generated BH3 in the Dearomatization Process. , 2019, Chemistry.

[4]  Jianguo Liu,et al.  Ni–O Cooperation versus Nickel(II) Hydride in Catalytic Hydroboration of N-Heteroarenes , 2019, ACS Catalysis.

[5]  Z. Li,et al.  Cobalt-bridged secondary building units in a titanium metal–organic framework catalyze cascade reduction of N-heteroarenes , 2018, Chemical science.

[6]  Jinhee Park,et al.  Titanium-Carboxylate Metal-Organic Framework Based on an Unprecedented Ti-Oxo Chain Cluster , 2018, Angewandte Chemie.

[7]  Jinhee Park,et al.  Titanium-Carboxylate Metal-Organic Framework Based on an Unprecedented Ti-Oxo Chain Cluster. , 2018, Angewandte Chemie.

[8]  Chia‐Kuang Tsung,et al.  Aperture-Opening Encapsulation of a Transition Metal Catalyst in a Metal-Organic Framework for CO2 Hydrogenation. , 2018, Journal of the American Chemical Society.

[9]  D. Unruh,et al.  Nickel-Catalyzed Regioselective 1,4-Hydroboration of N-Heteroarenes , 2018, ACS Catalysis.

[10]  C. Serre,et al.  A phase transformable ultrastable titanium-carboxylate framework for photoconduction , 2018, Nature Communications.

[11]  M. Eisen,et al.  Catalytic 1,2-Regioselective Dearomatization of N-Heteroaromatics via a Hydroboration , 2018 .

[12]  T. Hynes,et al.  Pyridine Hydroboration with a Diazaphospholene Precatalyst , 2018 .

[13]  Jianghua He,et al.  B(C6F5)3-Catalyzed C3-Selective C-H Borylation of Indoles: Synthesis, Intermediates, and Reaction Mechanism. , 2018, The Journal of organic chemistry.

[14]  Bin Rao,et al.  Metal-Free Regio- and Chemoselective Hydroboration of Pyridines Catalyzed by 1,3,2-Diazaphosphenium Triflate. , 2018, Journal of the American Chemical Society.

[15]  M. Ingleson,et al.  N-Heterocycle-Ligated Borocations as Highly Tunable Carbon Lewis Acids , 2017, Organometallics.

[16]  C. Tung,et al.  Iron-Catalyzed 1,2-Selective Hydroboration of N-Heteroarenes. , 2017, Journal of the American Chemical Society.

[17]  G. Nikonov,et al.  Zinc-Catalyzed Hydrosilylation and Hydroboration of N-Heterocycles , 2017 .

[18]  Wenbin Lin,et al.  Trivalent Zirconium and Hafnium Metal-Organic Frameworks for Catalytic 1,4-Dearomative Additions of Pyridines and Quinolines. , 2017, Journal of the American Chemical Society.

[19]  S. Geier,et al.  The Phosphinoboration of N-Heterocycles. , 2017, Chemistry.

[20]  D. Wright,et al.  Regioselective 1,4-hydroboration of pyridines catalyzed by an acid-initiated boronium cation. , 2017, Chemical communications.

[21]  Wenbin Lin,et al.  Transformation of Metal-Organic Framework Secondary Building Units into Hexanuclear Zr-Alkyl Catalysts for Ethylene Polymerization. , 2017, Journal of the American Chemical Society.

[22]  Sukbok Chang,et al.  Katalytische Desaromatisierung von N-Heteroarenen mit Silicium- und Borverbindungen , 2017 .

[23]  Sukbok Chang,et al.  Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds. , 2017, Angewandte Chemie.

[24]  Yang Song,et al.  Single-Site Cobalt Catalysts at New Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides. , 2017, Journal of the American Chemical Society.

[25]  C. D. F. Königs,et al.  Cooperative Catalysis at Metal-Sulfur Bonds. , 2017, Accounts of chemical research.

[26]  Viet Q. Nguyen,et al.  A Titanium–Organic Framework: Engineering of the Band-Gap Energy for Photocatalytic Property Enhancement , 2017 .

[27]  J. Okuda,et al.  Reactivity of a Molecular Magnesium Hydride Featuring a Terminal Magnesium-Hydrogen Bond. , 2016, Inorganic chemistry.

[28]  Wenbin Lin,et al.  Cerium-Hydride Secondary Building Units in a Porous Metal-Organic Framework for Catalytic Hydroboration and Hydrophosphination. , 2016, Journal of the American Chemical Society.

[29]  J. Okuda,et al.  Magnesium hydridotriphenylborate [Mg(thf)6][HBPh3]2: a versatile hydroboration catalyst. , 2016, Chemical communications.

[30]  Sebastian Kemper,et al.  Boron Lewis Acid-Catalyzed Hydroboration of Alkenes with Pinacolborane: BArF3 Does What B(C6 F5 )3 Cannot Do! , 2016, Chemistry.

[31]  Francis X. Greene,et al.  Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes , 2016, Nature Communications.

[32]  M. Ingleson,et al.  Highly Selective Catalytic trans-Hydroboration of Alkynes Mediated by Borenium Cations and B(C6F5)3. , 2016 .

[33]  C. Gunanathan,et al.  Ruthenium-Catalyzed Regioselective 1,4-Hydroboration of Pyridines. , 2016, Organic letters.

[34]  Sukbok Chang,et al.  Iridium-catalyzed selective 1,2-hydrosilylation of N-heterocycles , 2016, Chemical science.

[35]  Omar M. Yaghi,et al.  A Titanium-Organic Framework as an Exemplar of Combining the Chemistry of Metal- and Covalent-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[36]  Wenbin Lin,et al.  Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations. , 2016, Journal of the American Chemical Society.

[37]  Martin Oestreich,et al.  Katalytische elektrophile C-H-Silylierung von Pyridinen ermöglicht durch vorübergehende Aufhebung der Aromatizität , 2015 .

[38]  M. Oestreich,et al.  Catalytic Electrophilic C-H Silylation of Pyridines Enabled by Temporary Dearomatization. , 2015, Angewandte Chemie.

[39]  Sukbok Chang,et al.  Selective Silylative Reduction of Pyridines Leading to Structurally Diverse Azacyclic Compounds with the Formation of sp³ C-Si Bonds. , 2015, Journal of the American Chemical Society.

[40]  D. Milstein,et al.  Metall‐Ligand‐Kooperation , 2015 .

[41]  D. Milstein,et al.  Metal-ligand cooperation. , 2015, Angewandte Chemie.

[42]  J. Long,et al.  Synthesis and O2 Reactivity of a Titanium(III) Metal-Organic Framework. , 2015, Inorganic chemistry.

[43]  S. Harder,et al.  Calcium Hydride Catalyzed Highly 1,2-Selective Pyridine Hydrosilylation. , 2015, Chemistry.

[44]  Etienne Rochette,et al.  Metal-free catalytic C-H bond activation and borylation of heteroarenes , 2015, Science.

[45]  H. Iwamoto,et al.  Enantioselective Borylative Dearomatization of Indoles through Copper(I) Catalysis. , 2015, Angewandte Chemie.

[46]  Qiang Zhang,et al.  A single crystalline porphyrinic titanium metal–organic framework† †Electronic supplementary information (ESI) available. CCDC [1036868]. For ESI and crystallographic data in CIF or other electronic format. See DOI: 10.1039/c5sc00916b Click here for additional data file. Click here for additional da , 2015, Chemical science.

[47]  Z. Li,et al.  Organoborane catalyzed regioselective 1,4-hydroboration of pyridines. , 2015, Journal of the American Chemical Society.

[48]  R. Peters Cooperative Catalysis: Designing Efficient Catalysts for Synthesis , 2015 .

[49]  Sung-Woo Park,et al.  Boron-catalyzed silylative reduction of quinolines: selective sp3 C-Si bond formation. , 2014, Journal of the American Chemical Society.

[50]  M. Lutz,et al.  Multinuclear Magnesium Hydride Clusters: Selective Reduction and Catalytic Hydroboration of Pyridines , 2014 .

[51]  A. S. Dudnik,et al.  Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst , 2014, Nature Chemistry.

[52]  Omar M Yaghi,et al.  Water adsorption in porous metal-organic frameworks and related materials. , 2014, Journal of the American Chemical Society.

[53]  D. Stephan,et al.  Hydrogenation by Frustrated Lewis Pairs: Main Group Alternatives to Transition Metal Catalysts? , 2014 .

[54]  D. Wass,et al.  Transition Metal Frustrated Lewis Pairs , 2013 .

[55]  Martin Oestreich,et al.  Katalytische 1,4‐selektive Hydrosilylierung von Pyridinverbindungen und benzanellierten Verwandten , 2013 .

[56]  C. D. F. Königs,et al.  Catalytic 1,4-selective hydrosilylation of pyridines and benzannulated congeners. , 2013, Angewandte Chemie.

[57]  Yongbing Liu,et al.  Metal-free borane-catalyzed highly stereoselective hydrogenation of pyridines. , 2013, Journal of the American Chemical Society.

[58]  R. Crabtree,et al.  Outer sphere hydrogenation catalysis , 2013 .

[59]  Kuiling Ding,et al.  Die N‐H‐Funktion in der metallorganischen Katalyse , 2013 .

[60]  K. Ding,et al.  The N-H functional group in organometallic catalysis. , 2013, Angewandte Chemie.

[61]  D. Wass,et al.  Frustrated Lewis pairs beyond the main group: transition metal-containing systems. , 2013, Topics in current chemistry.

[62]  Yanfeng Jiang,et al.  Coexistence of Lewis acid and base functions: a generalized view of the frustrated Lewis pair concept with novel implications for reactivity. , 2013, Topics in current chemistry.

[63]  C. Crudden,et al.  Taking the F out of FLP: simple Lewis acid-base pairs for mild reductions with neutral boranes via borenium ion catalysis. , 2012, Journal of the American Chemical Society.

[64]  M. Suginome,et al.  Dearomatizing conversion of pyrazines to 1,4-dihydropyrazine derivatives via transition-metal-free diboration, silaboration, and hydroboration. , 2012, Chemical communications.

[65]  Yong‐Gui Zhou,et al.  Asymmetric hydrogenation of heteroarenes and arenes. , 2012, Chemical reviews.

[66]  S. You,et al.  Transfer hydrogenation with Hantzsch esters and related organic hydride donors. , 2012, Chemical Society reviews.

[67]  J. Mousseau,et al.  Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N-activated pyridines. , 2012, Chemical reviews.

[68]  M. Suginome,et al.  Regioselective synthesis of 1,2-dihydropyridines by rhodium-catalyzed hydroboration of pyridines. , 2012, Journal of the American Chemical Society.

[69]  B. Yates,et al.  Theoretical Investigation into the Palladium-Catalyzed Silaboration of Pyridines , 2012 .

[70]  S. Harder,et al.  Calcium-mediated hydroboration of alkenes: “Trojan horse” or “true” catalysis? , 2012 .

[71]  G. Kociok‐Köhn,et al.  Magnesium-Catalyzed Hydroboration of Pyridines , 2011 .

[72]  J. Menéndez,et al.  Advances in the chemistry of tetrahydroquinolines. , 2011, Chemical reviews.

[73]  Stéphane P. Roche,et al.  Desaromatisierungsstrategien in der Synthese strukturell komplexer Naturstoffe , 2011 .

[74]  J. Porco,et al.  Dearomatization strategies in the synthesis of complex natural products. , 2011, Angewandte Chemie.

[75]  M. Suginome,et al.  Palladium-catalyzed regioselective silaboration of pyridines leading to the synthesis of silylated dihydropyridines. , 2011, Journal of the American Chemical Society.

[76]  D. Gutsulyak,et al.  Facile catalytic hydrosilylation of pyridines. , 2011, Angewandte Chemie.

[77]  T. Ikariya Chemistry of Concerto Molecular Catalysis Based on the Metal/NH Bifunctionality , 2011 .

[78]  Johannes E. M. N. Klein,et al.  Bimetallic palladium catalysis: direct observation of Pd(III)-Pd(III) intermediates. , 2009, Journal of the American Chemical Society.

[79]  Gérard Férey,et al.  A new photoactive crystalline highly porous titanium(IV) dicarboxylate. , 2009, Journal of the American Chemical Society.

[80]  S. Chemler Phenanthroindolizidines and Phenanthroquinolizidines: Promising Alkaloids for Anti-Cancer Therapy. , 2009, Current bioactive compounds.

[81]  P. Andersson,et al.  Modern Reduction Methods , 2008 .

[82]  B. Singaram,et al.  Lithium aminoborohydrides 16. Synthesis and reactions of monomeric and dimeric aminoboranes. , 2008, The Journal of organic chemistry.

[83]  R. Leino,et al.  Synthesis of pharmaceutically active compounds containing a disubstituted piperidine framework. , 2008, Bioorganic & medicinal chemistry.

[84]  D. MacMillan,et al.  Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. , 2007, Accounts of chemical research.

[85]  T. Fukuyama,et al.  A practical synthesis of (-)-oseltamivir. , 2007, Angewandte Chemie.

[86]  B. Marciniec Catalysis by transition metal complexes of alkene silylation – recent progress and mechanistic implications , 2005 .

[87]  S. Guccione The chemistry of heterocycles—structure, reactions, syntheses, and applications 2nd, completely revised edition, T. Eicher, S. Hauptmann. Wiley-VCH (2003), 556 Seiten, paperback. ISBN: 3-527-30720-6 , 2005 .

[88]  K. D. Conroy,et al.  Borinium‐, Borenium‐ und Boroniumionen: Synthese, Reaktivität, Anwendung , 2005 .

[89]  W. Piers,et al.  Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. , 2005, Angewandte Chemie.

[90]  Alexandru T Balaban,et al.  Aromaticity as a cornerstone of heterocyclic chemistry. , 2004, Chemical reviews.

[91]  M. Ephritikhine,et al.  Borane-catalyzed hydroboration of substituted alkenes by lithium borohydride or sodium borohydride , 2003 .

[92]  R. Lavilla Recent developments in the chemistry of dihydropyridines , 2002 .

[93]  Robin M. Williams,et al.  Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. , 2002, Chemical reviews.

[94]  Ronghua Shu,et al.  Titanocene(III) catalyzed homogeneous hydrosilation-hydrogenation of pyridines , 2001 .

[95]  T. M. Krygowski,et al.  Structural aspects of aromaticity. , 2001, Chemical reviews.

[96]  H. Brown,et al.  New Economical, Convenient Procedures for the Synthesis of Catecholborane† , 2000 .

[97]  Ernst Peter Kundig,et al.  Transition-metal-mediated dearomatization reactions. , 2000, Chemical reviews.

[98]  D. O'Hagan Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids (1998 to 1999) , 2000 .

[99]  M. Brook Silicon in Organic, Organometallic, and Polymer Chemistry , 1999 .

[100]  T. Tilley,et al.  Yttrium Complexes of the Chelating, C2-Symmetric, Bis(silylamido)biphenyl Ligand [DADMB]2- (={[6,6‘-Me2-(C6H3)2](2,2‘-NSiMe2tBu)2}2-) , 1999 .

[101]  Y. Mu,et al.  Homogeneous Catalytic Hydrosilylation of Pyridines. , 1998, Angewandte Chemie.

[102]  Anne-Marie Lebuis,et al.  Homogen katalysierte Hydrosilylierung von Pyridinen , 1998 .

[103]  A. Katritzky,et al.  Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines , 1996 .

[104]  Alan R. Katritzky,et al.  Comprehensive Heterocyclic Chemistry IV , 1996 .

[105]  S. Davies,et al.  NADH mimics for the stereoselective reduction of benzoylformates to the corresponding mandelates. , 1991 .

[106]  N. Lewis,et al.  Unprecedented, bridged dihydrogen complex of a cofacial metallodiporphyrin and its relevance to the bimolecular reductive elimination of hydrogen , 1990 .

[107]  D. Stout,et al.  Recent advances in the chemistry of dihydropyridines , 1982 .

[108]  P. Rylander Catalytic Hydrogenation in Organic Syntheses , 1979 .

[109]  J. Kuthan,et al.  Chemistry of dihydropyridines , 1972 .