Quantization For Distributed Estimation in Large Scale Sensor Networks

We study the problem of quantization for distributed parameter estimation in large scale sensor networks. Assuming a maximum likelihood estimator at the fusion center, we show that the Fisher information is maximized by a score-function quantizer. This provides a tight bound on best possible MSE for any unbiased estimator. Furthermore, we show that for a general convex metric, the optimal quantizer belongs to the class of score function quantizers. We also discuss a few practical applications of our results in optimizing estimation performance in distributed and temporal estimation problems

[1]  Toby Berger,et al.  Estimation via compressed information , 1988, IEEE Trans. Inf. Theory.

[2]  Pramod K. Varshney,et al.  Distributed Bayesian signal detection , 1989, IEEE Trans. Inf. Theory.

[3]  John N. Tsitsiklis,et al.  Extremal properties of likelihood-ratio quantizers , 1993, IEEE Trans. Commun..

[4]  Amy R. Reibman,et al.  Design of quantizers for decentralized estimation systems , 1993, IEEE Trans. Commun..

[5]  John A. Gubner,et al.  Distributed estimation and quantization , 1993, IEEE Trans. Inf. Theory.

[6]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[7]  Shun-ichi Amari,et al.  Parameter estimation with multiterminal data compression , 1995, IEEE Trans. Inf. Theory.

[8]  X.R. Li,et al.  Optimal sensor data quantization for best linear unbiased estimation fusion , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Alejandro Ribeiro,et al.  Non-parametric distributed quantization-estimation using wireless sensor networks , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[10]  Ananthram Swami,et al.  Minimax Quantization for Distributed Maximum Likelihood Estimation , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[11]  Lang Tong,et al.  Type based estimation over multiaccess channels , 2006, IEEE Transactions on Signal Processing.