H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations

The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.

[1]  R. Govindjee,et al.  Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. , 1996, Biophysical journal.

[2]  M. Karplus,et al.  pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. , 1990, Biochemistry.

[3]  S. Misra,et al.  pH dependence of light‐induced proton release by bacteriorhodopsin , 1993, FEBS letters.

[4]  D. Case,et al.  Constant pH molecular dynamics in generalized Born implicit solvent , 2004, J. Comput. Chem..

[5]  C. Pace,et al.  A summary of the measured pK values of the ionizable groups in folded proteins , 2008, Protein science : a publication of the Protein Society.

[6]  Ana Damjanović,et al.  A buried lysine that titrates with a normal pKa: Role of conformational flexibility at the protein–water interface as a determinant of pKavalues , 2008, Protein science : a publication of the Protein Society.

[7]  R. Levy,et al.  Intrinsic pKas of ionizable residues in proteins: An explicit solvent calculation for lysozyme , 1994, Proteins.

[8]  Junjun Mao,et al.  MCCE2: Improving protein pKa calculations with extensive side chain rotamer sampling , 2009, J. Comput. Chem..

[9]  Haruki Nakamura,et al.  Electrostatic forces in two lysozymes: Calculations and measurements of histidine pKa values , 1992, Biopolymers.

[10]  E. Alexov,et al.  Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins. , 2002, Biophysical journal.

[11]  K. Sharp,et al.  On the calculation of pKas in proteins , 1993, Proteins.

[12]  E. Knapp,et al.  Electrostatic models for computing protonation and redox equilibria in proteins , 1999, European Biophysics Journal.

[13]  Donald Bashford,et al.  Proton affinity changes driving unidirectional proton transport in the bacteriorhodopsin photocycle. , 2003, Journal of molecular biology.

[14]  C. Tanford,et al.  Interpretation of protein titration curves. Application to lysozyme. , 1972, Biochemistry.

[15]  Lenwood S. Heath,et al.  H++: a server for estimating pKas and adding missing hydrogens to macromolecules , 2005, Nucleic Acids Res..

[16]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[17]  D. Bashford,et al.  Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. , 1992, Journal of molecular biology.

[18]  D. Case,et al.  A novel view of pH titration in biomolecules. , 2001, Biochemistry.

[19]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[20]  P. Beroza,et al.  Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Bondi van der Waals Volumes and Radii , 1964 .

[22]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Truhlar,et al.  Sensitivity of molecular dynamics simulations to the choice of the X‐ray structure used to model an enzymatic reaction , 2004, Protein science : a publication of the Protein Society.

[24]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[25]  A. Warshel,et al.  What are the dielectric “constants” of proteins and how to validate electrostatic models? , 2001, Proteins.

[26]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[27]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[28]  C. Brooks,et al.  Constant‐pH molecular dynamics using continuous titration coordinates , 2004, Proteins.

[29]  B. García-Moreno E.,et al.  Charges in the hydrophobic interior of proteins , 2010, Proceedings of the National Academy of Sciences.

[30]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[31]  Rebecca C. Wade,et al.  Improving the Continuum Dielectric Approach to Calculating pKas of Ionizable Groups in Proteins , 1996 .

[32]  M. Gilson,et al.  Prediction of pH-dependent properties of proteins. , 1994, Journal of molecular biology.

[33]  D. Bashford,et al.  Multiple‐site ligand binding to flexible macromolecules: Separation of global and local conformational change and an iterative mobile clustering approach , 1999 .

[34]  C. Castañeda,et al.  Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease , 2009, Proteins.

[35]  Ramu Anandakrishnan,et al.  Analysis of Basic Clustering Algorithms for Numerical Estimation of Statistical Averages in Biomolecules , 2008, J. Comput. Biol..

[36]  T. Schlick,et al.  Biomolecular modeling and simulation: a field coming of age , 2011, Quarterly Reviews of Biophysics.

[37]  Ulf Ryde,et al.  Comparison of methods for deriving atomic charges from the electrostatic potential and moments , 1998, J. Comput. Chem..

[38]  Donald Bashford,et al.  Multiple-site ligand binding to flexible macromolecules: Separation of global and local conformational change and an iterative mobile clustering approach , 1999, J. Comput. Chem..

[39]  Lisa Yan,et al.  A fast and accurate computational approach to protein ionization , 2008, Protein science : a publication of the Protein Society.

[40]  D. Bashford,et al.  pK(a) Calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin. , 2001, Journal of molecular biology.

[41]  Arieh Warshel,et al.  Consistent Calculations of pKa's of Ionizable Residues in Proteins: Semi-microscopic and Microscopic Approaches , 1997 .

[42]  Tamar Schlick,et al.  New Algorithms for Macromolecular Simulation , 2006 .

[43]  Gregory A. Grothaus,et al.  A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules , 2006, Proteins.

[44]  David P Lane,et al.  Molecular simulations of protein dynamics: new windows on mechanisms in biology , 2008, EMBO reports.

[45]  G. Vriend,et al.  Optimizing the hydrogen‐bond network in Poisson–Boltzmann equation‐based pKa calculations , 2001, Proteins.

[46]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[47]  P. Kollman,et al.  Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. , 2001, Annual review of biophysics and biomolecular structure.

[48]  Yutaka Ishikawa,et al.  Scientific Computing in Object-Oriented Parallel Environments , 1997, Lecture Notes in Computer Science.

[49]  Jan H. Jensen,et al.  Chemically accurate protein structures: Validation of protein NMR structures by comparison of measured and predicted pKa values , 2006, Journal of biomolecular NMR.

[50]  Nathan A. Baker,et al.  Implicit Solvent Electrostatics in Biomolecular Simulation , 2006 .