Spider mechanoreceptors

Spiders have highly developed mechanosensory systems, some of which provide access to forms of stimulation alien to our own sensations. Studies of hair-shaped air movement detectors (trichobothria) and tactile sensors have uncovered an outstanding refinement of the processes of stimulus uptake and stimulus transformation, which reflect details of both stimulus physics and behavioral significance. They also emphasize the potential contained in the seemingly simple Bauplan of arthropod cuticular hairs. Embedded into the spider exoskeleton are several thousands of strain detectors (slit sensilla) measuring compressive exoskeletal strains induced by various forms of loads and forces. A compound slit sensillum (lyriform organ) on the leg has become an important model system for studies of mechanoreceptor primary processes at the cellular and membrane level.

[1]  Peter G. Gillespie,et al.  Molecular basis of mechanosensory transduction , 2001, Nature.

[2]  Friedrich G. Barth,et al.  Dynamics of Arthropod Filiform Hairs. IV. Hair Motion in Air and Water , 1996 .

[3]  A. S. French,et al.  Active Signal Conduction through the Sensory Dendrite of a Spider Mechanoreceptor Neuron , 2003, The Journal of Neuroscience.

[4]  E. Seyfarth,et al.  Structural correlates of mechanosensory transduction and adaptation in identified neurons of spider slit sensilla , 2001, Journal of Comparative Physiology A.

[5]  Stanley J Bolanowski,et al.  Voltage-gated sodium channels are present on both the neural and capsular structures of Pacinian corpuscles , 2002, Somatosensory & motor research.

[6]  R. Klinke,et al.  Die Energieschwellen von Auge und Ohr in heutiger Sicht , 1989, Naturwissenschaften.

[7]  A. S. French,et al.  Peripheral GABAergic inhibition of spider mechanosensory afferents , 2002, The European journal of neuroscience.

[8]  John Thorson,et al.  Electrical and mechanical stimulation of a spider slit sensillum: Outward current excites , 1982, Journal of comparative physiology.

[9]  Frank Moss,et al.  Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance , 1993, Nature.

[10]  Friedrich G. Barth,et al.  Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria ( Cupiennius salei Keys.) , 1993 .

[11]  A. S. French,et al.  Ionic selectivity of mechanically activated channels in spider mechanoreceptor neurons. , 1997, Journal of neurophysiology.

[12]  I. Meinertzhagen,et al.  Peripheral synaptic contacts at mechanoreceptors in arachnids and crustaceans: Morphological and immunocytochemical characteristics , 2002, Microscopy research and technique.

[13]  J. A. C. Humphrey,et al.  The Motion-Sensing Hairs of Arthropods: Using Physics to Understand Sensory Ecology and Adaptive Evolution , 2001 .

[14]  I. Panek,et al.  Distribution and function of GABAB receptors in spider peripheral mechanosensilla. , 2003, Journal of neurophysiology.

[15]  Friedrich G. Barth,et al.  The Physics of Arthropod Medium-Flow Sensitive Hairs: Biological Models for Artificial Sensors , 2003 .

[16]  Shaun P. Collin,et al.  Sensory Processing in Aquatic Environments , 2011, Springer New York.

[17]  P. Görner A proposed transducing mechanism for a multiply-innervated mechanoreceptor (Trichobothrium) in spiders. , 1965, Cold Spring Harbor symposia on quantitative biology.

[18]  R. Blickhan,et al.  Strains in the exoskeleton of spiders , 2004, Journal of Comparative Physiology A.

[19]  Friedrich G. Barth,et al.  Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli , 1999 .

[20]  F. Barth,et al.  Arthropod touch reception: structure and mechanics of the basal part of a spider tactile hair , 2004, Journal of Comparative Physiology A.

[21]  P. Görner,et al.  Trichobothrien, ein Ferntastsinnesorgan bei Webespinnen (Araneen) , 1969, Zeitschrift für vergleichende Physiologie.

[22]  A. S. French,et al.  Intracellular characterization of identified sensory cells in a new spider mechanoreceptor preparation. , 1994, Journal of neurophysiology.

[23]  U. Grünert,et al.  K+ and Ca++ in the receptor lymph of arthropod cuticular mechanoreceptors , 1987, Journal of Comparative Physiology A.

[24]  Friedrich G. Barth,et al.  Dynamics of Arthropod Filiform Hairs. I. Mathematical Modelling of the Hair and Air Motions , 1993 .

[25]  Tateo Shimozawa,et al.  Cricket Wind Receptors: Thermal Noise for the Highest Sensitivity Known , 2003 .

[26]  U. Thurm Basics of the Generation of Receptor Potentials in Epidermal Mechanoreceptors of Insects , 1974 .

[27]  Friedrich G. Barth,et al.  Arthropod Cuticular Hairs: Tactile Sensors and the Refinement of Stimulus Transformation , 2003 .

[28]  F. Barth,et al.  Arthropod touch reception: spider hair sensilla as rapid touch detectors , 2001, Journal of Comparative Physiology A.

[29]  Friedrich G. Barth,et al.  Dynamics of Arthropod Filiform Hairs. III. Flow Patterns Related to Air Movement Detection in a Spider (Cupiennius salei KEYS.) , 1995 .

[30]  J. Theiss Mechanoreceptive bristles on the head of the blowfly: Mechanics and electrophysiology of the macrochaetae , 1979, Journal of comparative physiology.

[31]  R. Foelix Mechano- and Chemoreceptive Sensilla , 1985 .

[32]  F. Barth,et al.  X-ray microanalysis of receptor lymph in a cuticular arthropod sensillum , 1976, Journal of comparative physiology.

[33]  T. Friedel,et al.  Wind-sensitive interneurones in the spider CNS (Cupiennius salei ): directional information processing of sensory inputs from trichobothria on the walking legs , 1997, Journal of Comparative Physiology A.

[34]  H. Davis,et al.  A model for transducer action in the cochlea. , 1965, Cold Spring Harbor symposia on quantitative biology.

[35]  R. Foelix Occurrence of synapses in peripheral sensory nerves of arachnids , 1975, Nature.

[36]  F. Barth,et al.  Arthropod touch reception: stimulus transformation and finite element model of spider tactile hairs , 2001, Journal of Comparative Physiology A.

[37]  Jürgen Tautz,et al.  Reception of particle oscillation in a medium — an unorthodox sensory capacity , 1979, Naturwissenschaften.

[38]  I. Meinertzhagen,et al.  Organization of efferent peripheral synapses at mechanosensory neurons in spiders , 2000, The Journal of comparative neurology.

[39]  A. S. French,et al.  Sodium channel distribution in a spider mechanosensory organ , 1995, Brain Research.

[40]  F. Barth,et al.  A Spider’s World: Senses and Behavior , 2001 .

[41]  A. S. French,et al.  Sodium-dependent receptor current in a new mechanoreceptor preparation. , 1994, Journal of neurophysiology.

[42]  A. S. French,et al.  From stress and strain to spikes: mechanotransduction in spider slit sensilla , 2002, Journal of Comparative Physiology A.