Electrical conductive 3D-printed monolith adsorbent for CO2 capture

[1]  F. Rezaei,et al.  Development of 3D-printed polymer-zeolite composite monoliths for gas separation , 2018, Chemical Engineering Journal.

[2]  Hailong Li,et al.  Thermodynamic analysis on carbon dioxide capture by Electric Swing Adsorption (ESA) technology , 2018, Journal of CO2 Utilization.

[3]  Ryan P. Lively,et al.  Solution-Based 3D Printing of Polymers of Intrinsic Microporosity. , 2018, Macromolecular rapid communications.

[4]  P. Webley,et al.  Synthesis of a novel hybrid adsorbent which combines activated carbon and zeolite NaUSY for CO2 capture by electric swing adsorption (ESA) , 2018 .

[5]  Yixiang Shi,et al.  New hybrid composite honeycomb monolith with 13X zeolite and activated carbon for CO2 capture , 2018, Adsorption.

[6]  Z. Kennedy,et al.  Chemically Active, Porous 3D-Printed Thermoplastic Composites. , 2018, ACS applied materials & interfaces.

[7]  Carlos A. Grande,et al.  Conductive ZSM-5-Based Adsorbent for CO2 Capture: Active Phase vs Monolith , 2017 .

[8]  Christopher W. Jones,et al.  Monolith-Supported Amine-Functionalized Mg2(dobpdc) Adsorbents for CO2 Capture. , 2017, ACS applied materials & interfaces.

[9]  M. A. Moreira,et al.  Cryogenic pressure temperature swing adsorption process for natural gas upgrade , 2017 .

[10]  S. Mullens,et al.  CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith , 2017 .

[11]  Simon Ford,et al.  Additive manufacturing and sustainability: an exploratory study of the advantages and challenges , 2016 .

[12]  J. Knox,et al.  3D-Printed Zeolite Monoliths for CO2 Removal from Enclosed Environments. , 2016, ACS applied materials & interfaces.

[13]  E. Saiz,et al.  Robocasting of Structural Ceramic Parts with Hydrogel Inks , 2016 .

[14]  Yaling Liu,et al.  3D printing scaffolds with hydrogel materials for biomedical applications , 2015 .

[15]  T. S. Srivatsan,et al.  Additive Manufacturing : Innovations, Advances, and Applications , 2015 .

[16]  Alírio E. Rodrigues,et al.  Activated carbon honeycomb monolith – Zeolite 13X hybrid system to capture CO2 from flue gases employing Electric Swing Adsorption , 2013 .

[17]  Christopher I. Hawkins,et al.  3D printing for CO2 capture and chemical engineering design , 2013 .

[18]  M. in het Panhuis,et al.  Extrusion Printing of Flexible Electrically Conducting Carbon Nanotube Networks , 2012 .

[19]  M. A. Rao Rheology of Fluid and Semisolid Foods: Principles and Applications , 2011 .

[20]  Alexandre F. P. Ferreira,et al.  Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes , 2011 .

[21]  P. Calvert,et al.  Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials , 2011 .

[22]  B. Derby Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution , 2010 .

[23]  Alírio E. Rodrigues,et al.  Electric swing adsorption as emerging CO2 capture technique , 2009 .

[24]  E. Kumacheva,et al.  Patterning surfaces with functional polymers. , 2008, Nature materials.

[25]  Jalil R. Ugal,et al.  Preparation of Zeolite Type 13X from Locally Available Raw Materials , 2008, Iraqi Journal of Chemical and Petroleum Engineering.

[26]  M. Petkovska,et al.  Multiphysics modeling of electric-swing adsorption system with in-vessel condensation , 2007 .

[27]  J. Cesarano,et al.  Direct Ink Writing of Three‐Dimensional Ceramic Structures , 2006 .

[28]  J. Lewis,et al.  Direct writing in three dimensions , 2004 .

[29]  Jimmie L. Williams,et al.  Monolith structures, materials, properties and uses , 2001 .

[30]  M. Ghannam,et al.  Rheological properties of carboxymethyl cellulose , 1997 .

[31]  M. M. Cross Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems , 1965 .

[32]  P. Ruch,et al.  3D-printed SAPO-34 monoliths for gas separation , 2018 .

[33]  Ibrahim T. Ozbolat,et al.  Current advances and future perspectives in extrusion-based bioprinting. , 2016, Biomaterials.

[34]  Matthias G. R. Faes,et al.  Extrusion-based 3D printing of ceramic components , 2015 .