Picosecond gain dynamics of an actively mode-locked external-cavity laser diode

We report a new experimental approach to study the temporal gain dynamics of an actively mode-locked external-cavity laser diode. The experiment can be viewed as an electrical pump-optical probe technique. Picosecond time resolution is achieved by synchronizing the actively mode-locked semiconductor laser to a mode-locked Ti:sapphire laser. The transmission of the Ti:sapphire pulses through the active region of the laser diode is then measured as a function of photon energy and delay time. Our experiment allows to investigate the dynamics of the entire gain spectrum with picosecond time resolution since the Ti:sapphire laser is wavelength tunable. On the basis of these data we are able to determine directly the wavelength dependence of the differential gain. The results compare well with microscopic calculations. The implication for the mode-locking behavior of the diode laser is discussed. >

[1]  W. Elsässer,et al.  Output characteristics of RF-modulated laser diodes , 1991 .

[2]  Eckehard Schöll,et al.  Theory of subpicosecond pulse generation by active modelocking of a semiconductor laser amplifier in an external cavity: limits for the pulsewidth , 1991 .

[3]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[4]  John E. Bowers,et al.  Monolithic hybrid mode‐locked 1.3 μm semiconductor lasers , 1990 .

[5]  P.G. May,et al.  Monolithic mode locking of long cavity GaAs-AlGaAs semiconductor lasers , 1991, IEEE Photonics Technology Letters.

[6]  U. Koren,et al.  Ultrafast gain dynamics in 1.5 μm multiple quantum well optical amplifiers , 1991 .

[7]  L. A. Glasser,et al.  C.W. modelocking of a GaInAsP diode laser , 1978 .

[8]  D. W. Crust,et al.  Active mode-locking of an external cavity GaInAsP laser incorporating a fibre-grating reflector , 1988 .

[9]  A. Yariv,et al.  Passive mode locking of a two‐section multiple quantum well laser at harmonics of the cavity round‐trip frequency , 1991 .

[10]  Gerard Mourou,et al.  1000 times expansion/compression of optical pulses for chirped pulse amplification , 1987 .

[11]  A. Olsson,et al.  Active mode locking of linear and ring external-cavity semiconductor lasers , 1981, IEEE Journal of Quantum Electronics.

[12]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[13]  Gregory Raybon,et al.  Transform‐limited 1.4 ps optical pulses from a monolithic colliding‐pulse mode‐locked quantum well laser , 1990 .

[14]  J. Kuhl,et al.  Pulse shortening of actively mode‐locked diode lasers by wavelength tuning , 1987 .

[15]  S. Corzine,et al.  Actively mode-locked semiconductor lasers , 1989 .

[16]  W. Lenth Picosecond gain measurements in a GaAlAs diode laser. , 1984, Optics letters.

[17]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[18]  H. Inaba,et al.  Bandwidth limited picosecond optical pulse generation from actively mode-locked AlGaAs diode laser , 1980 .

[19]  John E. Bowers,et al.  Short pulse generation using multisegment mode-locked semiconductor lasers , 1992 .

[20]  Yoh Ogawa,et al.  Generation of an extremely short single mode pulse (∼2 ps) by fiber compression of a gain‐switched pulse from a 1.3 μm distributed‐feedback laser diode , 1991 .

[21]  Hermann A. Haus,et al.  Picosecond pulse generation with a cw GaAlAs laser diode , 1978 .

[22]  Gadi Eisenstein,et al.  Femtosecond gain dynamics in InGaAsP optical amplifiers , 1990 .

[23]  A. Kasukawa,et al.  Observation of ultrashort (<4 ps) gain‐switched optical pulses from long‐wavelength multiple quantum well lasers , 1989 .

[24]  Martin Schell,et al.  Generation of single femtosecond pulses by hybrid mode-locking of a semiconductor laser , 1992 .

[25]  P. W. Smith,et al.  Passive mode locking of a semiconductor diode laser. , 1984, Optics letters.

[26]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .