Ultrasound sensing with optical microcavities

Nowadays, ultrasound sensors are playing an irreplaceable role in the fields of biomedical imaging and industrial nondestructive inspection. Currently, piezoelectric transducers are the most widely used ultrasound sensors, but their sensitivities drop quickly when the size becomes smaller, leading to a typical sensor size at the millimeter to centimeter scale. In order to realize both high sensitivity and spatial resolution, various optical ultrasound sensors have been developed. Among them, ultrasound sensors using high-$Q$ optical microcavities have realized unprecedented sensitivities and broad bandwidth and can be mass-produced on a silicon chip. In this review, we introduce ultrasound sensors using three types of optical microcavities, including Fabry-Perot cavities, $\pi$-phase-shifted Bragg gratings, and whispering gallery mode microcavities. We introduce the sensing mechanisms using optical microcavities and discuss several key parameters for ultrasound sensors. We then review the recent work on ultrasound sensing using these three types of microcavities and their applications in practical detection scenarios, such as photoacoustic imaging, ranging, and particle detection.

[1]  Yun-Feng Xiao,et al.  Ultrasound detection using a thermal-assisted microcavity Raman laser , 2022, AAPPS Bulletin.

[2]  Han Yang,et al.  Micropascal-sensitivity ultrasound sensors based on optical microcavities , 2022, Photonics Research.

[3]  W. Luo,et al.  Underwater Acoustic Wave Detection Based on Packaged Optical Microbubble Resonator , 2022, Journal of Lightwave Technology.

[4]  Han Yang,et al.  High-Sensitivity Air-Coupled Megahertz-Frequency Ultrasound Detection Using On-Chip Microcavities , 2022, Physical Review Applied.

[5]  Q. Song,et al.  Emerging material platforms for integrated microcavity photonics , 2022, Science China Physics, Mechanics & Astronomy.

[6]  Q. Gong,et al.  Dissipative Acousto-optic Interactions in Optical Microcavities. , 2022, Physical review letters.

[7]  Qizhen Sun,et al.  Multi-channel parallel ultrasound detection based on a photothermal tunable fiber optic sensor array. , 2022, Optics Letters.

[8]  Jianguo Ma,et al.  Optical ultrasound sensing for biomedical imaging , 2022, Measurement.

[9]  R. Zemp,et al.  Ultrasound sensing at thermomechanical limits with optomechanical buckled-dome microcavities. , 2022, Optics express.

[10]  Chuan Wang,et al.  Ultrasound Sensing Using Packaged Microsphere Cavity in the Underwater Environment , 2022, Sensors.

[11]  A. Rosenthal,et al.  Silicon-photonics acoustic detector for optoacoustic micro-tomography , 2022, Nature Communications.

[12]  Q. Gong,et al.  Single-molecule optofluidic microsensor with interface whispering gallery modes , 2022, Proceedings of the National Academy of Sciences.

[13]  Changhui Li,et al.  An encapsulated optical microsphere sensor for ultrasound detection and photoacoustic imaging , 2021, Science China Physics, Mechanics & Astronomy.

[14]  M. Humar,et al.  Whispering-gallery-mode sensors for biological and physical sensing , 2021, Nature Reviews Methods Primers.

[15]  S. Pelli,et al.  Microbubble resonators for scattering-free absorption spectroscopy of nanoparticles. , 2021, Optics Express.

[16]  Yong‐Chun Liu,et al.  Cavity optomechanical sensing , 2021, Nanophotonics.

[17]  Xiaoshun Jiang,et al.  A Compact and Highly Sensitive Voice-Eavesdropping Microresonator , 2021, Journal of Lightwave Technology.

[18]  Daquan Yang,et al.  Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities , 2021, Light, science & applications.

[19]  Antony K. Chen,et al.  1/f-noise-free optical sensing with an integrated heterodyne interferometer , 2021, Nature Communications.

[20]  V. Ntziachristos,et al.  Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics , 2021, Nature Photonics.

[21]  Lan Yang,et al.  Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements , 2021, Light, science & applications.

[22]  Paul H. Dannenberg,et al.  Laser particles with omnidirectional emission for cell tracking , 2021, Light, science & applications.

[23]  G. Wang,et al.  Optical ultrasound sensors for photoacoustic imaging: a narrative review. , 2021, Quantitative imaging in medicine and surgery.

[24]  F. Vollmer,et al.  Nonlinear Sensing with Whispering-Gallery Mode Microcavities: From Label-Free Detection to Spectral Fingerprinting. , 2020, Nano letters.

[25]  X. Yi,et al.  Ultrasound Measurement Using On-Chip Optical Micro-Resonators and Digital Optical Frequency Comb , 2020, Journal of Lightwave Technology.

[26]  B. Guan,et al.  Flexible microbubble-based Fabry–Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging , 2020 .

[27]  V. Ntziachristos,et al.  A submicrometre silicon-on-insulator resonator for ultrasound detection , 2020, Nature.

[28]  Steven H. Huang,et al.  Whispering-Gallery Sensors , 2020, Matter.

[29]  Rayyan Manwar,et al.  Overview of Ultrasound Detection Technologies for Photoacoustic Imaging , 2020, Micromachines.

[30]  Xiaoshun Jiang,et al.  Multiphysical sensing of light, sound and microwave in a microcavity Brillouin laser , 2020 .

[31]  N. J. Engelsen,et al.  High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits , 2020, Nature Communications.

[32]  I. Favero,et al.  Optomechanical mass spectrometry , 2020, Nature Communications.

[33]  X. Yi,et al.  Etched Silicon-on-Insulator Microring Resonator for Ultrasound Measurement , 2020, IEEE Photonics Journal.

[34]  Bin Zhang,et al.  Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors , 2020 .

[35]  Lucia Cavigli,et al.  Microbubble Resonators for All-Optical Photoacoustics of Flowing Contrast Agents , 2020, Sensors.

[36]  G. Brawley,et al.  Ultrabroadband and sensitive cavity optomechanical magnetometry , 2020, Photonics Research.

[37]  Z. Shao,et al.  High-spatial-resolution ultrasonic sensor using a fiber-optic Fabry–Perot interferometer , 2019 .

[38]  Lijun Xu,et al.  Fiber optic-based laser interferometry array for three-dimensional ultrasound sensing. , 2019, Optics letters.

[39]  Hao F. Zhang,et al.  Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography , 2019, Nature Communications.

[40]  Qiangzhou Rong,et al.  A high-frequency hydrophone using an optical fiber microknot resonator , 2019, Optics Communications.

[41]  P. Zhou,et al.  Sound source localization based on Michelson fiber optic interferometer array , 2019, Optical Fiber Technology.

[42]  X. Bao,et al.  Ultrasound sensing based on an in-fiber dual-cavity Fabry-Perot interferometer. , 2019, Optics Letters.

[43]  Zhou Zheng,et al.  Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments , 2019, Sensors.

[44]  Lucia Cavigli,et al.  Resonant Microbubble as a Microfluidic Stage for All-Optical Photoacoustic Sensing , 2019, Physical Review Applied.

[45]  A. Rosenthal,et al.  Noise reduction in resonator-based ultrasound sensors by using a CW laser and phase detection , 2019, Optics Letters.

[46]  Ioannis Papakonstantinou,et al.  All-Optical Rotational Ultrasound Imaging , 2019, Scientific Reports.

[47]  Jin Tian,et al.  A review of ultrasound detection methods for breast microcalcification. , 2019, Mathematical biosciences and engineering : MBE.

[48]  A. Desjardins,et al.  All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy , 2018, Light, science & applications.

[49]  A. Schliesser,et al.  Continuous force and displacement measurement below the standard quantum limit , 2018, Nature Physics.

[50]  V. Ntziachristos,et al.  Looking at sound: optoacoustics with all-optical ultrasound detection , 2018, Light, science & applications.

[51]  W. Bowen,et al.  Precision ultrasound sensing on a chip , 2018, Nature Communications.

[52]  Ping Liu,et al.  Development of a Novel CMUT-Based Concentric Dual-Element Ultrasonic Transducer: Design, Fabrication, and Characterization , 2018, Journal of Microelectromechanical Systems.

[53]  Wenwen Ma,et al.  Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor. , 2018, Optics express.

[54]  J. Caro,et al.  Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer. , 2017, Optics Express.

[55]  I. Papakonstantinou,et al.  Ultrasensitive plano-concave optical microresonators for ultrasound sensing , 2017 .

[56]  Vasilis Ntziachristos,et al.  Fiber interferometer for hybrid optical and optoacoustic intravital microscopy , 2017 .

[57]  Thomas Berer,et al.  All-optical photoacoustic projection imaging. , 2017, Biomedical optics express.

[58]  Wenwen Ma,et al.  An Optical Fiber Fabry–Perot Interferometric Sensor Based on Functionalized Diaphragm for Ultrasound Detection and Imaging , 2017, IEEE Photonics Journal.

[59]  Wonseok Lee,et al.  Ultrasonic transducers for medical diagnostic imaging , 2017, Biomedical Engineering Letters.

[60]  Chao Tian,et al.  Air-coupled ultrasound detection using capillary-based optical ring resonators , 2017, Scientific Reports.

[61]  Lan Yang,et al.  Single Nanoparticle Detection Using Optical Microcavities , 2017, Advanced materials.

[62]  Daniel Razansky,et al.  Optoacoustic characterization of broadband directivity patterns of capacitive micromachined ultrasonic transducers , 2016, Journal of biomedical optics.

[63]  Wolfgang Drexler,et al.  All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging. , 2016, Biomedical optics express.

[64]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[65]  Vasilis Ntziachristos,et al.  All-optical optoacoustic microscope based on wideband pulse interferometry. , 2016, Optics letters.

[66]  Donghyun Kim,et al.  Detection of Single Nanoparticles Using the Dissipative Interaction in a High-Q Microcavity , 2016, 1604.02249.

[67]  B. Snyder,et al.  A sensitive optical micro-machined ultrasound sensor (OMUS) based on a silicon photonic ring resonator on an acoustical membrane , 2015, Scientific Reports.

[68]  Cheng Zhang,et al.  Review of Imprinted Polymer Microrings as Ultrasound Detectors: Design, Fabrication, and Characterization , 2015, IEEE Sensors Journal.

[69]  T A Birks,et al.  Optical micro-knot resonator hydrophone. , 2015, Optics express.

[70]  Edward Z. Zhang,et al.  Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter , 2015, Nature Photonics.

[71]  Hao Li,et al.  Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. , 2015, Optica.

[72]  Andrea M Armani,et al.  Photoelastic ultrasound detection using ultra-high-Q silica optical resonators. , 2014, Optics express.

[73]  Tao Ling,et al.  Ultrabroad Bandwidth and Highly Sensitive Optical Ultrasonic Detector for Photoacoustic Imaging , 2014 .

[74]  Matthew R Foreman,et al.  Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. , 2014, Nature nanotechnology.

[75]  Biqin Dong,et al.  Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy. , 2014, Journal of applied physics.

[76]  Kebin Shi,et al.  Single nanoparticle detection using split-mode microcavity Raman lasers , 2014, Proceedings of the National Academy of Sciences.

[77]  M. Metcalfe Applications of cavity optomechanics , 2014 .

[78]  Lan Yang,et al.  Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser , 2014, Proceedings of the National Academy of Sciences.

[79]  Biqin Dong,et al.  Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. , 2014, Optics letters.

[80]  Rongqing Hui,et al.  Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm. , 2014, Optics letters.

[81]  Hao Li,et al.  A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy , 2014, Scientific Reports.

[82]  Vasilis Ntziachristos,et al.  Embedded ultrasound sensor in a silicon-on-insulator photonic platform , 2014 .

[83]  D. Stamper-Kurn,et al.  Optically measuring force near the standard quantum limit , 2013, Science.

[84]  Wei Wang,et al.  Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening , 2013, Advanced materials.

[85]  Junjie Yao,et al.  Photoacoustic microscopy , 2013, Laser & photonics reviews.

[86]  Shangchun Fan,et al.  Fiber-Optic Fabry–Pérot Acoustic Sensor With Multilayer Graphene Diaphragm , 2013, IEEE Photonics Technology Letters.

[87]  Lee Kumanchik,et al.  High sensitivity optomechanical reference accelerometer over 10 kHz , 2013, 1303.1188.

[88]  Lan Yang,et al.  Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices , 2012 .

[89]  Jean-Pierre Monchalin,et al.  Non-contact biomedical photoacoustic and ultrasound imaging. , 2012, Journal of biomedical optics.

[90]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[91]  T. Kippenberg,et al.  A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.

[92]  R. Bashir,et al.  On a Chip , 2011, IEEE Pulse.

[93]  S. Ozdemir,et al.  Detecting single viruses and nanoparticles using whispering gallery microlasers. , 2011, Nature nanotechnology.

[94]  Vasilis Ntziachristos,et al.  High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. , 2011, Optics letters.

[95]  Tao Ling,et al.  Pure optical photoacoustic microscopy , 2011, Optics express.

[96]  Q. Gong,et al.  On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator , 2010, 1011.0254.

[97]  Da-Ren Chen,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2009, 0912.0078.

[98]  Horacio Lamela,et al.  Optoacoustic imaging using fiber-optic interferometric sensors. , 2009, Optics letters.

[99]  S. Arnold,et al.  Single virus detection from the reactive shift of a whispering-gallery mode , 2008, Proceedings of the National Academy of Sciences.

[100]  Antao Chen,et al.  Direct electron beam writing of electro-optic polymer microring resonators. , 2008, Optics express.

[101]  Sheng-Wen Huang,et al.  Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[102]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[103]  Lute Maleki,et al.  Optical resonators with ten million finesse. , 2007, Optics express.

[104]  L. Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[105]  A. Minardo,et al.  Response of fiber Bragg gratings to longitudinal ultrasonic waves , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[106]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[107]  Minghua Xu,et al.  Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  S. Krishnaswamy,et al.  Response of a fiber Bragg grating ultrasonic sensor , 2003 .

[109]  Jianguo Ma,et al.  A Fabry–Perot Fiber-Optic Array for Photoacoustic Imaging , 2022, IEEE Transactions on Instrumentation and Measurement.

[110]  Binjie Qin,et al.  Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. , 2018, Ultrasound in medicine & biology.

[111]  Cheng Sun,et al.  Optical Detection of Ultrasound in Photoacoustic Imaging , 2017, IEEE Transactions on Biomedical Engineering.

[112]  Markus Aspelmeyer,et al.  Quantum optomechanics , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[113]  Paul P.L. Regtien,et al.  9 – Acoustic Sensors , 2012 .

[114]  Ming Han,et al.  Analysis of π-Phase-Shifted Fiber BraggGratings for Ultrasonic Detection , 2012 .

[115]  K. Vahala Optical microcavities , 2003, Nature.

[116]  N. Hoppe,et al.  Application of ultrasonic sensors in the process industry , 2002 .

[117]  A. J. Zuckerwar,et al.  Atmospheric absorption of sound: Further developments , 1995 .

[118]  V E Zakharov,et al.  Figure Captions , 1994 .