Visual modeling and simulation of multiscale phenomena

Many large-scale systems seen in real life, such as human crowds, fluids, and granular materials, exhibit complicated motion at many different scales, from a characteristic global behavior to important small-scale detail. Such multiscale systems are computationally expensive for traditional simulation techniques to capture over the full range of scales. In this dissertation, I present novel techniques for scalable and efficient simulation of these large, complex phenomena for visual computing applications. These techniques are based on a new approach of representing a complex system by coupling together separate models for its large-scale and fine-scale dynamics. In fluid simulation, it remains a challenge to efficiently simulate fine local detail such as foam, ripples, and turbulence without compromising the accuracy of the large-scale flow. I present two techniques for this problem that combine physically-based numerical simulation for the global flow with efficient local models for detail. For surface features, I propose the use of texture synthesis, guided by the physical characteristics of the macroscopic flow. For turbulence in the fluid motion itself, I present a technique that tracks the transfer of energy from the mean flow to the turbulent fluctuations and synthesizes these fluctuations procedurally, allowing extremely efficient visual simulation of turbulent fluids. Another large class of problems which are not easily handled by traditional approaches is the simulation of very large aggregates of discrete entities, such as dense pedestrian crowds and granular materials. I present a technique for crowd simulation that couples a discrete per-agent model of individual navigation with a novel continuum formulation for the collective motion of pedestrians. This approach allows simulation of dense crowds of a hundred thousand agents at near-real-time rates on desktop computers. I also present a technique for simulating granular materials, which generalizes this model and introduces a novel computational scheme for friction. This method efficiently reproduces a wide range of granular behavior and allows two-way interaction with simulated solid bodies. In all of these cases, the proposed techniques are typically an order of magnitude faster than comparable existing methods. Through these applications to a diverse set of challenging simulation problems, I demonstrate the benefits of the proposed approach, showing that it is a powerful and versatile technique for the simulation of a broad range of large and complex systems.

[1]  Joachim Schöberl,et al.  Minimizing Quadratic Functions Subject to Bound Constraints with the Rate of Convergence and Finite Termination , 2005, Comput. Optim. Appl..

[2]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[3]  Tomoyuki Nishita,et al.  Virtual sandbox , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[4]  Francis H Harlow,et al.  The particle-in-cell method for numerical solution of problems in fluid dynamics , 1962 .

[5]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.

[6]  Jakub Wejchert,et al.  Animation aerodynamics , 1991, SIGGRAPH.

[7]  Jessica K. Hodgins,et al.  Stable spaces for real-time clothing , 2010, SIGGRAPH 2010.

[8]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[9]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[10]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[11]  Dinesh Manocha,et al.  Interactive Modeling, Simulation and Control of Large-Scale Crowds and Traffic , 2009, MIG.

[12]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Lubos Buzna,et al.  Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions , 2005, Transp. Sci..

[14]  E. Weinan,et al.  Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics , 2005 .

[15]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[16]  Taras I. Lakoba,et al.  Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution , 2005, Simul..

[17]  Robert Behringer,et al.  Introduction to the focus issue on granular materials. , 1999, Chaos.

[18]  John J. Fruin,et al.  Pedestrian planning and design , 1971 .

[19]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Kun Zhou,et al.  Fast example-based surface texture synthesis via discrete optimization , 2006, The Visual Computer.

[21]  Ming C. Lin,et al.  Motion planning and autonomy for virtual humans , 2008, SIGGRAPH '08.

[22]  Ignacio Llamas,et al.  Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Robert Bridson,et al.  Evolving sub-grid turbulence for smoke animation , 2008, SCA '08.

[24]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[25]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[26]  M. Quecedo,et al.  Numerical modelling of the propagation of fast landslides using the finite element method , 2004 .

[27]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[28]  Irfan Essa,et al.  Texture optimization for example-based synthesis , 2005, SIGGRAPH 2005.

[29]  Dinesh Manocha,et al.  Real-time navigation of independent agents using adaptive roadmaps , 2007, VRST '07.

[30]  T. Pfaff,et al.  Synthetic turbulence using artificial boundary layers , 2009, SIGGRAPH 2009.

[31]  David Salesin,et al.  Image Analogies , 2001, SIGGRAPH.

[32]  Alain Fournier,et al.  A simple model of ocean waves , 1986, SIGGRAPH.

[33]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[34]  Ming C. Lin,et al.  Fast animation of turbulence using energy transport and procedural synthesis , 2008, SIGGRAPH 2008.

[35]  Michael Ashikhmin,et al.  Synthesizing natural textures , 2001, I3D '01.

[36]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[37]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[38]  H. K. Moffatt Statistical Fluid Mechanics: The Mechanics of Turbulence , volume 1. By A. S. M ONIN and A. M. Y AGLOM . M. I. T. Press, 1971. 769 pp. £10.50. , 1973 .

[39]  Robert Bridson,et al.  Fluid simulation: SIGGRAPH 2007 course notesVideo files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[40]  Alain Fournier,et al.  Stochastic Motion—Motion Under the Influence of Wind , 1992, Comput. Graph. Forum.

[41]  C. Josserand,et al.  Stationary shear flows of dense granular materials: a tentative continuum modelling , 2004, The European physical journal. E, Soft matter.

[42]  John Funge,et al.  Cognitive modeling: knowledge, reasoning and planning for intelligent characters , 1999, SIGGRAPH.

[43]  Takahiro Saito,et al.  Realistic Animation of Fluid with Splash and Foam , 2003, Comput. Graph. Forum.

[44]  Philip Dutré,et al.  Mixing Fluids and Granular Materials , 2009, Comput. Graph. Forum.

[45]  Dinesh Manocha,et al.  Composite agents , 2008, SCA '08.

[46]  Richard Szeliski,et al.  Video textures , 2000, SIGGRAPH.

[47]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[48]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[49]  Hugues Hoppe,et al.  Appearance-space texture synthesis , 2006, SIGGRAPH 2006.

[50]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[51]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[52]  James F. O'Brien,et al.  Eurographics/acm Siggraph Symposium on Computer Animation (2007) Liquid Simulation on Lattice-based Tetrahedral Meshes , 2022 .

[53]  Soraia Raupp Musse,et al.  A Model of Human Crowd Behavior , 1997 .

[54]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[55]  Michael Schreckenberg,et al.  Pedestrian and evacuation dynamics , 2002 .

[56]  Ken Perlin,et al.  [Computer Graphics]: Three-Dimensional Graphics and Realism , 2022 .

[57]  Sarah Tariq,et al.  Scalable fluid simulation using anisotropic turbulence particles , 2010, SIGGRAPH 2010.

[58]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[59]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, SIGGRAPH 2010.

[60]  Dinesh Manocha,et al.  ClearPath: highly parallel collision avoidance for multi-agent simulation , 2009, SCA '09.

[61]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[62]  Jacob Fish,et al.  Multiscale Methods: Bridging the Scales in Science and Engineering , 2009 .

[63]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[64]  Dinesh Manocha,et al.  Real-Time Path Planning in Dynamic Virtual Environments Using Multiagent Navigation Graphs , 2008, IEEE Transactions on Visualization and Computer Graphics.

[65]  R. Hughes The flow of human crowds , 2003 .

[66]  Robert Bridson,et al.  Curl-noise for procedural fluid flow , 2007, ACM Trans. Graph..

[67]  Ming C. Lin,et al.  Feature-Guided Dynamic Texture Synthesis on Continuous Flows , 2007, Rendering Techniques.

[68]  Dinesh K. Pai,et al.  Staggered projections for frictional contact in multibody systems , 2008, SIGGRAPH Asia '08.

[69]  Nadia Magnenat-Thalmann,et al.  A data-driven approach for real-time clothes simulation , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[70]  Eugene Fiume,et al.  Turbulent wind fields for gaseous phenomena , 1993, SIGGRAPH.

[71]  Sébastien Paris,et al.  Pedestrian Reactive Navigation for Crowd Simulation: a Predictive Approach , 2007, Comput. Graph. Forum.

[72]  Joëlle Thollot,et al.  A physically-based particle model of emergent crowd behaviors , 2010, ArXiv.

[73]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[74]  Jessica K. Hodgins,et al.  Flow-based video synthesis and editing , 2004, SIGGRAPH 2004.

[75]  Jacques Magnaudet,et al.  High-Reynolds-number turbulence in a shear-free boundary layer: revisiting the Hunt–Graham theory , 2003, Journal of Fluid Mechanics.

[76]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[77]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[78]  Rahul Narain,et al.  Aggregate dynamics for dense crowd simulation , 2009, SIGGRAPH 2009.

[79]  Michael Gleicher,et al.  Scalable behaviors for crowd simulation , 2004, Comput. Graph. Forum.

[80]  Ignacio García-Fernández,et al.  Interactive Terrain Simulation and Force Distribution Models in Sand Piles , 2006, ACRI.

[81]  Daniel Thalmann,et al.  Populating virtual environments with crowds , 2006, VRCIA '06.

[82]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[83]  Yizhou Yu,et al.  Feature matching and deformation for texture synthesis , 2004, SIGGRAPH 2004.

[84]  W. Mccomb,et al.  The physics of fluid turbulence. , 1990 .

[85]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[86]  Yizhou Yu,et al.  Particle-based simulation of granular materials , 2005, SCA '05.

[87]  Karl Sims,et al.  Particle animation and rendering using data parallel computation , 1990, SIGGRAPH.

[88]  Annie Luciani,et al.  Physical models of loose soils dynamically marked by a moving object , 1996, Proceedings Computer Animation '96.

[89]  Jessica K. Hodgins,et al.  Animating Sand, Mud, and Snow , 1999, Comput. Graph. Forum.

[90]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[91]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[92]  Jeong-Mo Hong,et al.  Discontinuous fluids , 2005, SIGGRAPH 2005.

[93]  Donald H. House,et al.  Better with bubbles: enhancing the visual realism of simulated fluid , 2004, SCA '04.

[94]  Céline Loscos,et al.  Intuitive crowd behavior in dense urban environments using local laws , 2003, Proceedings of Theory and Practice of Computer Graphics, 2003..

[95]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[96]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[97]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[98]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[99]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[100]  Nenad Bićanić,et al.  Discrete Element Methods , 2004 .

[101]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[102]  Andrew Selle,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[103]  Gavin S. P. Miller,et al.  Globular dynamics: A connected particle system for animating viscous fluids , 1989, Comput. Graph..

[104]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[105]  J. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, SIGGRAPH 2007.

[106]  Lucas Kovar,et al.  Automated extraction and parameterization of motions in large data sets , 2004, ACM Trans. Graph..

[107]  James F. O'Brien,et al.  A texture synthesis method for liquid animations , 2006, SCA '06.

[108]  Nancy M. Amato,et al.  Better Group Behaviors in Complex Environments using Global Roadmaps , 2002 .

[109]  N. Badler,et al.  Crowd simulation incorporating agent psychological models, roles and communication , 2005 .

[110]  Takashi Chikayama,et al.  Simulating the Collision Avoidance Behavior of Pedestrians , 2000 .

[111]  Hyeong-Seok Ko,et al.  A Semi‐Lagrangian CIP Fluid Solver without Dimensional Splitting , 2008, Comput. Graph. Forum.

[112]  James F. O'Brien,et al.  A semi-Lagrangian contouring method for fluid simulation , 2006, ACM Trans. Graph..

[113]  Adrien Treuille,et al.  Modular bases for fluid dynamics , 2009, ACM Trans. Graph..

[114]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[115]  Kun Zhou,et al.  Synthesis of progressively-variant textures on arbitrary surfaces , 2003, ACM Trans. Graph..

[116]  Stefano Soatto,et al.  Editable dynamic textures , 2002, SIGGRAPH '02.

[117]  Steve Marschner,et al.  Image-Based BRDF Measurement Including Human Skin , 1999, Rendering Techniques.

[118]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[119]  Xin Li,et al.  Modeling soil: realtime dynamic models for soil slippage and manipulation , 1993, SIGGRAPH.

[120]  Jiawen Chen,et al.  Texture transfer using geometry correlation , 2006, EGSR '06.

[121]  Annie Luciani,et al.  A multi-scale physical model of granular materials , 1995 .

[122]  Dinesh Manocha,et al.  Multi-robot coordination using generalized social potential fields , 2009, 2009 IEEE International Conference on Robotics and Automation.

[123]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, SIGGRAPH 2007.