Characterization of complex networks: Application to robustness analysis

This thesis focuses on the topological characterization of complex networks. It specifically focuses on those elementary graph measures that are of interest when quantifying topology-related aspects of the robustness of complex networks. This thesis makes the following contributions to the field of complex networks. Firstly, the thesis analyses the relationships among a variety of graph measures and proposes a definite set, capable of expressing the most relevant topological properties of complex networks. Secondly, the thesis relies on spectral measures to initiate a classification of the qualitative topological properties that characterize specific classes of complex networks. Thirdly, the thesis illustrates the use of spectral measures in a quantitative characterization of topology-related aspects of the network robustness. Finally, this thesis demonstrates the use of spectral measures in a quantitative characterization of the extent to which the robustness to different types of failures manifests itself in the underlying complex networks structure.

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  Christos Faloutsos,et al.  Epidemic spreading in real networks: an eigenvalue viewpoint , 2003, 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings..

[3]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[4]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[5]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[6]  Almerima Jamakovic,et al.  Topological Characteristics of the Dutch Road Infrastructure , 2006 .

[7]  Ferenc Juhász,et al.  The asymptotic behaviour of Fiedler's algebraic connectivity for random graphs , 1991, Discret. Math..

[8]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[9]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[10]  B. Mohar Some applications of Laplace eigenvalues of graphs , 1997 .

[11]  Abhijit Sarkar,et al.  Two-peak and three-peak optimal complex networks. , 2004, Physical review letters.

[12]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[13]  Béla Bollobás,et al.  Random Graphs , 1985 .

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  Martin G. Everett,et al.  Models of core/periphery structures , 2000, Soc. Networks.

[16]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[17]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[18]  S. Strogatz Exploring complex networks , 2001, Nature.

[19]  M. Faloutsos The internet AS-level topology: three data sources and one definitive metric , 2006, CCRV.

[20]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[21]  D. Lusseau,et al.  The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations , 2003, Behavioral Ecology and Sociobiology.

[22]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[23]  A. Jamakovic,et al.  On the relationship between the algebraic connectivity and graph's robustness to node and link failures , 2007, 2007 Next Generation Internet Networks.

[24]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[25]  Dasong Cao,et al.  Bounds on eigenvalues and chromatic numbers , 1998 .

[26]  R. Olfati-Saber Ultrafast consensus in small-world networks , 2005, Proceedings of the 2005, American Control Conference, 2005..

[27]  Bojan Mohar,et al.  Laplace eigenvalues of graphs - a survey , 1992, Discret. Math..

[28]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[29]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[30]  Almerima Jamakovic,et al.  Influence of the network structure on robustness , 2007, 2007 15th IEEE International Conference on Networks.

[31]  R.E. Kooij,et al.  Robustness of networks against viruses: the role of the spectral radius , 2006, 2006 Symposium on Communications and Vehicular Technology.

[32]  H. Yuan A bound on the spectral radius of graphs , 1988 .

[33]  Anja Feldmann,et al.  Building an AS-topology model that captures route diversity , 2006, SIGCOMM 2006.

[34]  Thomas Erlebach,et al.  On the Spectrum and Structure of Internet Topology Graphs , 2002, IICS.

[35]  Almerima Jamakovic,et al.  On the relationships between topological measures in real-world networks , 2008, Networks Heterog. Media.

[36]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[37]  A. Gibbons Algorithmic Graph Theory , 1985 .

[38]  Yuan Hong,et al.  A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.

[39]  Beom Jun Kim,et al.  Attack vulnerability of complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[41]  Lixia Zhang,et al.  Observing the evolution of internet as topology , 2007, SIGCOMM 2007.

[42]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[43]  Piet Van Mieghem Performance Analysis of Communications Networks and Systems: Random variables , 2006 .

[44]  Kinkar Chandra Das,et al.  Some new bounds on the spectral radius of graphs , 2004, Discret. Math..

[45]  Sebastian M. Cioaba,et al.  Extreme eigenvalues of nonregular graphs , 2007, J. Comb. Theory, Ser. B.

[46]  Martin H. Levinson Linked: The New Science of Networks , 2004 .

[47]  S. N. Dorogovtsev,et al.  Spectra of complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  P. Erdos,et al.  On the strength of connectedness of a random graph , 1964 .

[49]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[50]  Almerima Jamakovic,et al.  The Laplacian Spectrum of Complex Networks , 2006 .

[51]  Anirban Banerjee,et al.  Spectral plot properties: Towards a qualitative classification of networks , 2008, Networks Heterog. Media.

[52]  A. Uhlig S. Jamakovic,et al.  On the relationships between topological metrics in real-world networks , 2007 .

[53]  W. Haemers,et al.  Which graphs are determined by their spectrum , 2003 .

[54]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[56]  Christos Gkantsidis,et al.  Spectral analysis of Internet topologies , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[57]  Daryl J. Daley,et al.  Epidemic Modelling: An Introduction , 1999 .

[58]  Peter Donnelly,et al.  Superfamilies of Evolved and Designed Networks , 2004 .

[59]  Piet Van Mieghem,et al.  On the Robustness of Complex Networks by Using the Algebraic Connectivity , 2008, Networking.

[60]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[61]  R. Merris A survey of graph laplacians , 1995 .

[62]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[63]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[64]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[65]  B. Bollobás,et al.  Random Graphs of Small Order , 1985 .