The shape of modern tree reconstruction methods.

THERESE A. HOLTON1,2, MARK WILKINSON3, AND DAVIDE PISANI4,∗ 1Department of Biology, The National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland; 2UCD Complex and Adaptive Systems Laboratory/UCD Conway Institute of Biomolecular and Biomedical Science/School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; 3Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK; and 4School of Earth Sciences and School of Biological Sciences, The University of Bristol, Woodland Road, Bristol BS8 1UG, UK ∗Correspondence to be sent to: School of Biological Sciences and School of Earth Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG; E-mail: davide.pisani@bristol.ac.uk

[1]  D. H. Colless,et al.  RELATIVE SYMMETRY OF CLADOGRAMS AND PHENOGRAMS : AN EXPERIMENTAL STUDY , 1995 .

[2]  Andy Purvis,et al.  Comparative methods for explaining adaptations , 1991, Nature.

[3]  Eric Durand,et al.  apTreeshape: statistical analysis of phylogenetic tree shape , 2006, Bioinform..

[4]  D. H. Colless,et al.  Phylogenetics: The Theory and Practice of Phylogenetic Systematics. , 1982 .

[5]  Oliver Eulenstein,et al.  The shape of supertrees to come: tree shape related properties of fourteen supertree methods. , 2005, Systematic biology.

[6]  E. Wiley Phylogenetics: The Theory and Practice of Phylogenetic Systematics , 1981 .

[7]  Thomas J Naughton,et al.  Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified , 2006, BMC Evolutionary Biology.

[8]  S. Heard,et al.  PATTERNS IN TREE BALANCE AMONG CLADISTIC, PHENETIC, AND RANDOMLY GENERATED PHYLOGENETIC TREES , 1992, Evolution; international journal of organic evolution.

[9]  M. Steel,et al.  Does random tree puzzle produce Yule-Harding trees in the many-taxon limit? , 2013, Mathematical biosciences.

[10]  H. Munro,et al.  Mammalian protein metabolism , 1964 .

[11]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[12]  Ed Stam,et al.  DOES IMBALANCE IN PHYLOGENIES REFLECT ONLY BIAS? , 2002, Evolution; international journal of organic evolution.

[13]  D. Rosen Vicariant Patterns and Historical Explanation in Biogeography , 1978 .

[14]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[15]  Arne Ø. Mooers,et al.  Inferring Evolutionary Process from Phylogenetic Tree Shape , 1997, The Quarterly Review of Biology.

[16]  M. Steel,et al.  Distributions of cherries for two models of trees. , 2000, Mathematical biosciences.

[17]  A. Kupczok Consequences of different null models on the tree shape bias of supertree methods. , 2011, Systematic biology.

[18]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[19]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[20]  D. Brooks,et al.  Review of Phylogenetics: The Theory and Practice of Phylogenetic Systematics , by E. O. Wiley (Wiley-Interscience, 1981; 439 p.) , 1982 .

[21]  Olivier François,et al.  Which random processes describe the tree of life? A large-scale study of phylogenetic tree imbalance. , 2006, Systematic biology.

[22]  D. Aldous Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today , 2001 .

[23]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[24]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[25]  References , 1971 .

[26]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .

[27]  Mark Kirkpatrick,et al.  DO PHYLOGENETIC METHODS PRODUCE TREES WITH BIASED SHAPES? , 1996, Evolution; international journal of organic evolution.

[28]  J. S. Rogers,et al.  CENTRAL MOMENTS AND PROBABILITY DISTRIBUTION OF COLLESS'S COEFFICIENT OF TREE IMBALANCE , 1994, Evolution; international journal of organic evolution.

[29]  Thérèse A. Holton,et al.  Deep Genomic-Scale Analyses of the Metazoa Reject Coelomata: Evidence from Single- and Multigene Families Analyzed Under a Supertree and Supermatrix Paradigm , 2010, Genome biology and evolution.

[30]  C. Guyer,et al.  ADAPTIVE RADIATION AND THE TOPOLOGY OF LARGE PHYLOGENIES , 1993, Evolution; international journal of organic evolution.

[31]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[32]  P. Pearson,et al.  The imbalance of paleontological trees , 2001, Paleobiology.

[33]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[34]  Kurt Hornik,et al.  Implementing a Class of Permutation Tests: The coin Package , 2008 .

[35]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[36]  Mark D. Wilkinson,et al.  A view of supertree methods , 2001, Bioconsensus.

[37]  Bernice W. Polemis Nonparametric Statistics for the Behavioral Sciences , 1959 .

[38]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[39]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..

[40]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[41]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[42]  M. Slatkin,et al.  SEARCHING FOR EVOLUTIONARY PATTERNS IN THE SHAPE OF A PHYLOGENETIC TREE , 1993, Evolution; international journal of organic evolution.

[43]  James S. Rogers,et al.  CENTRAL MOMENTS AND PROBABILITY DISTRIBUTIONS OF THREE MEASURES OF PHYLOGENETIC TREE IMBALANCE , 1996 .

[44]  A. von Haeseler,et al.  Random Tree-Puzzle leads to the Yule-Harding distribution. , 2011, Molecular biology and evolution.