A Quality-Centered Analysis of Eye Tracking Data in Foveated Rendering

We would like to thank NVIDIA for providing us with two Quadro K6000 graphics cards for the user study, the Intel Visual Computing Institute, the European Union (EU) for the co-funding as part of the Dreamspace project, the German Federal Ministry for Economic A airs and Energy (BMWi) for funding the MATEDIS ZIM project (grant no KF2644109) and the Federal Ministry of Education and Research (BMBF) for funding the project OLIVE (grant no 13N13161).

[1]  S. Wu,et al.  Adler's Physiology of the Eye , 2002 .

[2]  Andrew T. Duchowski,et al.  EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations Gaze-Contingent Level Of Detail Rendering , 2022 .

[3]  Pawanesh Abrol,et al.  Direction Estimation Model for Gaze Controlled Systems , 2016 .

[4]  Libor Vása,et al.  Perceptual Metrics for Static and Dynamic Triangle Meshes , 2013, Eurographics.

[5]  Ann McNamara,et al.  Perceptually-motivated graphics, visualization and 3D displays , 2010, SIGGRAPH '10.

[6]  Benjamin Watson,et al.  Managing level of detail through peripheral degradation: effects on search performance with a head-mounted display , 1997, TCHI.

[7]  Ivan Viola,et al.  Flicker Observer Effect: Guiding Attention Through High Frequency Flicker in Images , 2017, Comput. Graph. Forum.

[8]  I. Rentschler,et al.  Peripheral vision and pattern recognition: a review. , 2011, Journal of vision.

[9]  Eric Horvitz,et al.  Perception, Attention, and Resources: A Decision-Theoretic Approach to Graphics Rendering , 1997, UAI.

[10]  Jason Lawrence,et al.  Accelerating real-time shading with reverse reprojection caching , 2007, GH '07.

[11]  Lester C. Loschky,et al.  How late can you update gaze-contingent multiresolutional displays without detection? , 2007, TOMCCAP.

[12]  Karol Myszkowski,et al.  Perception‐driven Accelerated Rendering , 2017, Comput. Graph. Forum.

[13]  Pitchaya Sitthi-Amorn,et al.  Amortized supersampling , 2009, SIGGRAPH 2009.

[14]  Donald P. Greenberg,et al.  Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments , 2001, TOGS.

[15]  Arthur F. Kramer,et al.  Creating a new dynamic measure of the useful field of view using gaze-contingent displays , 2014, ETRA.

[16]  Anand K. Gramopadhye,et al.  On spatiochromatic visual sensitivity and peripheral color LOD management , 2009, TAP.

[17]  Gordon Wetzstein,et al.  A survey on computational displays: Pushing the boundaries of optics, computation, and perception , 2013, Comput. Graph..

[18]  Lester C. Loschky,et al.  User performance with gaze contingent multiresolutional displays , 2000, ETRA.

[19]  Frank Tong,et al.  Foundations of Vision , 2018 .

[20]  Andrew T. Duchowski,et al.  Eye Tracking Methodology: Theory and Practice , 2003, Springer London.

[21]  Kristien Ooms,et al.  Accuracy and precision of fixation locations recorded with the low-cost Eye Tribe tracker in different experimental set- ups , 2015 .

[22]  Philipp Slusallek,et al.  An analysis of eye-tracking data in foveated ray tracing , 2016, 2016 IEEE Second Workshop on Eye Tracking and Visualization (ETVIS).

[23]  Marc Levoy,et al.  Gaze-directed volume rendering , 1990, I3D '90.

[24]  Marc M. Sebrechts,et al.  HANDBOOK OF VIRTUAL ENVIRONMENTS , 2014 .

[25]  Philipp Slusallek,et al.  Foveated Real‐Time Ray Tracing for Head‐Mounted Displays , 2016, Comput. Graph. Forum.

[26]  Carlo H. Séquin,et al.  Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments , 1993, SIGGRAPH.

[27]  Desney S. Tan,et al.  Foveated 3D graphics , 2012, ACM Trans. Graph..

[28]  Daniel R Saunders,et al.  Direct measurement of the system latency of gaze-contingent displays , 2013, Behavior Research Methods.