A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability

We report excellent operability of a lithium-ion battery with a gel membrane of an sp3 boron-based single ion polymer, lithium poly(1,2,3,4-butanetetracarboxylic acid borate) (LiPBAB), as the electrolyte. The battery exhibits outstanding performance in a wide temperature range of 25–100 °C with high ionic conductivity of 2.9 × 10−4 S cm−1, high electrochemical stability of 4.3 V, a large cationic transference number t+ of 0.89 and an excellent mechanical strength of 33 MPa at room temperature. The remarkable cyclic stability of the battery at 100 °C demonstrates exceptional device safety enabled by the electrolyte membrane.

[1]  Hansong Cheng,et al.  Lithium‐Ion Batteries with a Wide Temperature Range Operability Enabled by Highly Conductive sp3 Boron‐Based Single Ion Polymer Electrolytes , 2014 .

[2]  Hansong Cheng,et al.  Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries , 2014 .

[3]  Hansong Cheng,et al.  A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries , 2013 .

[4]  Y. Lai,et al.  A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries , 2013 .

[5]  Yusong Zhu,et al.  A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries , 2013 .

[6]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[7]  M. Armand,et al.  Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions , 2013 .

[8]  G. Cui,et al.  Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries , 2013 .

[9]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[10]  Hui Yang,et al.  A novel all-solid electrolyte based on a co-polymer of poly-(methoxy/hexadecal-poly(ethylene glycol) methacrylate) for lithium-ion cell , 2012 .

[11]  A. Abdelghany,et al.  Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass , 2012 .

[12]  Min Yang,et al.  Membranes in Lithium Ion Batteries , 2012, Membranes.

[13]  J. Salminen,et al.  Lithium ion battery production , 2012 .

[14]  Rachid Meziane,et al.  Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries , 2011 .

[15]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[16]  D. Macfarlane,et al.  Lithium doped N,N-dimethyl pyrrolidinium tetrafluoroborate organic ionic plastic crystal electrolytes for solid state lithium batteries , 2011 .

[17]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[18]  Chunsheng Wang,et al.  Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number , 2010 .

[19]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[20]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[21]  Stephen J. Harris,et al.  Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents , 2009 .

[22]  Hu Jian,et al.  Wet-laid non-woven fabric for separator of lithium-ion battery , 2009 .

[23]  Tatsuo Nakamura,et al.  Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery , 2008 .

[24]  D. Aurbach,et al.  On the electrochemical and thermal behavior of lithium bis(oxalato)borate (LiBOB) solutions , 2007 .

[25]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[26]  R. Fröhlich,et al.  Facile and Reliable Synthesis of Tetraphenoxyborates and Their Properties , 2006 .

[27]  B. Scrosati,et al.  Superacid ZrO2-added, composite polymer electrolytes with improved transport properties , 2006 .

[28]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[29]  D. Desmarteau,et al.  Solid Polymer Electrolytes from Polyanionic Lithium Salts Based on the LiTFSI Anion Structure , 2004 .

[30]  J. Kerr,et al.  Network Single Ion Conductors Based on Comb-Branched Polyepoxide Ethers and Lithium Bis(allylmalonato)borate , 2004 .

[31]  J. Kerr,et al.  Synthesis and Characterization of Network Type Single Ion Conductors , 2004 .

[32]  B. Scrosati,et al.  Advanced electrolyte and electrode materials for lithium polymer batteries , 2003 .

[33]  Zhu-de Xu,et al.  Electrochemical characteristics of bilayer film of polyaniline composite positive with polymer electrolyte binder/polymer electrolyte for Li-ion batteries , 2001 .

[34]  Bruno Scrosati,et al.  Recent advances in lithium ion battery materials , 2000 .

[35]  M. Watanabe,et al.  Single ion conduction in polyether electrolytes alloyed with lithium salt of a perfluorinated polyimide , 2000 .

[36]  Maria Forsyth,et al.  Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries , 1999, Nature.

[37]  C. Capiglia,et al.  Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes , 1999 .

[38]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[39]  L. Krause,et al.  Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells , 1997 .

[40]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[41]  K. Shigehara,et al.  Synthesis of Aluminate Polymer Complexes as Single-Ionic Solid Electrolytes , 1996 .

[42]  M. Armand,et al.  Perfluorosulfonate-polyether based single ion conductors , 1995 .

[43]  P. Bruce,et al.  Electrochemical measurement of transference numbers in polymer electrolytes , 1987 .

[44]  B. Steele,et al.  Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes , 1982 .

[45]  Daniel M. Seo,et al.  Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms , 2014 .

[46]  Zhan Lin,et al.  Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators , 2011 .

[47]  Wu Xu,et al.  Structures of orthoborate anions and physical properties of their lithium salt nonaqueous solutions , 2003 .

[48]  C. Wan,et al.  Structure and performance of porous polymer electrolytes based on P(VDF-HFP) for lithium ion batteries , 2002 .

[49]  Kang Xu,et al.  LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation , 2002 .

[50]  Wu Xu,et al.  Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions , 2001 .

[51]  K. Shigehara,et al.  Attempts at lithium single-ionic conduction by anchoring sulfonate anions as terminating groups of oligo(oxyethylene) side chains in comb-type polyphosphazenes , 1994 .

[52]  B. Scrosati,et al.  Lithium polymer batteries , 1993 .