A variable-order fractional differential equation model of shape memory polymers

[1]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[2]  R. Metzler,et al.  Generalized viscoelastic models: their fractional equations with solutions , 1995 .

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[5]  A. Lion,et al.  On the dynamic behaviour of polymers under finite strains : constitutive modelling and identification of parameters , 2000 .

[6]  Hisaaki Tobushi,et al.  Thermomechanical constitutive model of shape memory polymer , 2001 .

[7]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[8]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[9]  Robin Shandas,et al.  Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. , 2007, Biomaterials.

[10]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[11]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[12]  Thao D. Nguyen,et al.  A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation , 2008 .

[13]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[14]  K. A. Burke,et al.  Soft shape memory in main-chain liquid crystalline elastomers , 2010 .

[15]  William R. Rodgers,et al.  Semi-crystalline two-way shape memory elastomer , 2011 .

[16]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[17]  W. Chen,et al.  A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems , 2011 .

[18]  Jinwoo Choi,et al.  Effect of physical aging on the shape-memory behavior of amorphous networks , 2012 .

[19]  Fawang Liu,et al.  A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model , 2013, Comput. Math. Appl..

[20]  Jinwoo Choi,et al.  Modeling the glass transition of amorphous networks for shape-memory behavior , 2013 .

[21]  Thao D. Nguyen,et al.  Modeling Shape-Memory Behavior of Polymers , 2013 .

[22]  Stefan Samko,et al.  Fractional integration and differentiation of variable order: an overview , 2012, Nonlinear Dynamics.

[23]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[24]  Thao D. Nguyen,et al.  A predictive parameter for the shape memory behavior of thermoplastic polymers , 2016 .

[25]  Hongguang Sun,et al.  An equivalence between generalized Maxwell model and fractional Zener model , 2016 .

[26]  Xia Li,et al.  An Operational Matrix Technique for Solving Variable Order Fractional Differential-Integral Equation Based on the Second Kind of Chebyshev Polynomials , 2016 .