Characterizing regulatory path motifs in integrated networks using perturbational data

We introduce Pathicular http://bioinformatics.psb.ugent.be/software/details/Pathicular, a Cytoscape plugin for studying the cellular response to perturbations of transcription factors by integrating perturbational expression data with transcriptional, protein-protein and phosphorylation networks. Pathicular searches for 'regulatory path motifs', short paths in the integrated physical networks which occur significantly more often than expected between transcription factors and their targets in the perturbational data. A case study in Saccharomyces cerevisiae identifies eight regulatory path motifs and demonstrates their biological significance.

[1]  William Stafford Noble,et al.  The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. , 2006, Genes & development.

[2]  Andrzej Kudlicki,et al.  High-resolution timing of cell cycle-regulated gene expression , 2007, Proceedings of the National Academy of Sciences.

[3]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[4]  Yonina C. Eldar,et al.  eQED: an efficient method for interpreting eQTL associations using protein networks , 2008, Molecular systems biology.

[5]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.

[6]  R. Milo,et al.  Topological generalizations of network motifs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  S. Brunak,et al.  New weakly expressed cell cycle‐regulated genes in yeast , 2005, Yeast.

[8]  T. Ideker,et al.  Supporting Online Material for A Systems Approach to Mapping DNA Damage Response Pathways , 2006 .

[9]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[10]  T. Hughes,et al.  Mapping pathways and phenotypes by systematic gene overexpression. , 2006, Molecular cell.

[11]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[12]  D. Karger,et al.  Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity , 2009, Nature Genetics.

[13]  K. Nasmyth,et al.  The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6 , 1996, Molecular and cellular biology.

[14]  C. Ball,et al.  Saccharomyces Genome Database. , 2002, Methods in enzymology.

[15]  P. Blaiseau,et al.  Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA , 1998, The EMBO journal.

[16]  Peter Kaiser,et al.  A Dominant Suppressor Mutation of the met30 Cell Cycle Defect Suggests Regulation of the Saccharomyces cerevisiae Met4-Cbf1 Transcription Complex by Met32* , 2008, Journal of Biological Chemistry.

[17]  M. Eisen,et al.  Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering , 2002, Genome Biology.

[18]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[19]  D. Koller,et al.  Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network , 2008, Nature Biotechnology.

[20]  Pietro Liò,et al.  Bottleneck Genes and Community Structure in the Cell Cycle Network of S. pombe , 2007, PLoS Comput. Biol..

[21]  Uri Alon,et al.  Topological generalizations of network motifs. Phys Rev E 70:031909 , 2004 .

[22]  M. Gerstein,et al.  Global analysis of protein phosphorylation in yeast , 2005, Nature.

[23]  T. Ideker,et al.  Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae , 2006, Journal of biology.

[24]  I. Simon,et al.  Backup in gene regulatory networks explains differences between binding and knockout results , 2009, Molecular systems biology.

[25]  Hanah Margalit,et al.  Detection of regulatory circuits by integrating the cellular networks of protein-protein interactions and transcription regulation. , 2003, Nucleic acids research.

[26]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[27]  Agnieszka Sirko,et al.  A Novel Form of Transcriptional Silencing by Sum1-1 Requires Hst1 and the Origin Recognition Complex , 2001, Molecular and Cellular Biology.

[28]  Trey Ideker,et al.  Integrated Assessment and Prediction of Transcription Factor Binding , 2006, PLoS Comput. Biol..

[29]  Charles Boone,et al.  Identifying transcription factor functions and targets by phenotypic activation , 2006, Proceedings of the National Academy of Sciences.

[30]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[31]  D. Botstein,et al.  Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. , 2001, Molecular biology of the cell.

[32]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[33]  T. Hughes,et al.  Exploration of Essential Gene Functions via Titratable Promoter Alleles , 2004, Cell.

[34]  Patrick J. Killion,et al.  Genetic reconstruction of a functional transcriptional regulatory network , 2007, Nature Genetics.

[35]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[36]  P. Barré,et al.  Saccharomyces cerevisiae PAU genes are induced by anaerobiosis , 2000, Molecular microbiology.

[37]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[38]  T. Jaakkola,et al.  Validation and refinement of gene-regulatory pathways on a network of physical interactions , 2005, Genome Biology.

[39]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[40]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[41]  Lin Tang,et al.  Inferring direct regulatory targets from expression and genome location analyses: a comparison of transcription factor deletion and overexpression , 2006, BMC Genomics.

[42]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[43]  Andrew D. Sharrocks,et al.  Regulation of Cell Cycle-Specific Gene Expression through Cyclin-Dependent Kinase-Mediated Phosphorylation of the Forkhead Transcription Factor Fkh2p , 2004, Molecular and Cellular Biology.

[44]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Roded Sharan,et al.  SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments , 2007, ISMB/ECCB.

[46]  Tommi S. Jaakkola,et al.  Physical Network Models , 2004, J. Comput. Biol..

[47]  D. Glover,et al.  Cell cycle control , 1995 .

[48]  Martin Vingron,et al.  A joint model of regulatory and metabolic networks , 2006, BMC Bioinformatics.

[49]  Erik van Nimwegen,et al.  SwissRegulon: a database of genome-wide annotations of regulatory sites , 2006, Nucleic Acids Res..

[50]  E. Fraenkel,et al.  Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks , 2009, Science Signaling.

[51]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[52]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.