Objects in Context

In the task of visual object categorization, semantic context can play the very important role of reducing ambiguity in objects' visual appearance. In this work we propose to incorporate semantic object context as a post-processing step into any off-the-shelf object categorization model. Using a conditional random field (CRF) framework, our approach maximizes object label agreement according to contextual relevance. We compare two sources of context: one learned from training data and another queried from Google Sets. The overall performance of the proposed framework is evaluated on the PASCAL and MSRC datasets. Our findings conclude that incorporating context into object categorization greatly improves categorization accuracy.

[1]  I. Biederman,et al.  Scene perception: Detecting and judging objects undergoing relational violations , 1982, Cognitive Psychology.

[2]  Robert M. Haralick,et al.  Decision Making in Context , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Thomas M. Strat,et al.  Context-Based Vision: Recognizing Objects Using Information from Both 2D and 3D Imagery , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Jitendra Malik,et al.  Textons, contours and regions: cue integration in image segmentation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[7]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[8]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[9]  Jiebo Luo,et al.  Probabilistic spatial context models for scene content understanding , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  Pietro Perona,et al.  Mutual Boosting for Contextual Inference , 2003, NIPS.

[11]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[12]  Antonio Torralba,et al.  Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes , 2003, NIPS.

[13]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[15]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[16]  Jennifer Chu-Carroll,et al.  Question Answering Using Constraint Satisfaction: QA-By-Dossier-With-Contraints , 2004, ACL.

[17]  Nando de Freitas,et al.  A Statistical Model for General Contextual Object Recognition , 2004, ECCV.

[18]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[19]  Burr Settles,et al.  Biomedical Named Entity Recognition using Conditional Random Fields and Rich Feature Sets , 2004, NLPBA/BioNLP.

[20]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[21]  Katherine A. Heller,et al.  Bayesian Sets , 2005, NIPS.

[22]  Joachim M. Buhmann,et al.  Model Order Selection and Cue Combination for Image Segmentation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[23]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[24]  Lior Wolf,et al.  A Critical View of Context , 2006, International Journal of Computer Vision.

[25]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[27]  Bernt Schiele,et al.  Multiple Object Class Detection with a Generative Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[28]  Antonio Criminisi,et al.  TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation , 2006, ECCV.

[29]  Serge J. Belongie,et al.  Does Image Segmentation Improve Object Categorization ? , 2007 .