Non-differentiable second order symmetric duality in mathematical programming with F-convexity
暂无分享,去创建一个
Kok Lay Teo | X. Q. Yang | Xinmin Yang | K. Teo | X. Q. Yang | Xinmin Yang
[1] M. A. Hanson. On sufficiency of the Kuhn-Tucker conditions , 1981 .
[2] Murray Schechter,et al. Non differentiable symmetric duality , 1996, Bulletin of the Australian Mathematical Society.
[3] Santanu K. Mishra,et al. Second order symmetric duality in mathematical programming with F-convexity , 2000, Eur. J. Oper. Res..
[4] Olvi L. Mangasarian,et al. Second- and higher-order duality in nonlinear programming☆ , 1975 .
[5] Izhar Ahmad,et al. Second order symmetric duality for nonlinear minimax mixed integer programs , 1997 .
[6] G. Dantzig,et al. Symmetric dual nonlinear programs. , 1965 .
[7] Xinmin Yang,et al. On Second-Order Symmetric Duality in Nondifferentiable Programming , 2001 .
[8] Murray Schechter,et al. More on subgradient duality , 1979 .
[9] Kok Lay Teo,et al. Second-order duality for nonlinear programming , 2004 .
[10] B. V. Shah,et al. Integer and Nonlinear Programming , 1971 .
[11] M. A. Hanson,et al. Further Generalizations of Convexity in Mathematical Programming , 1982 .
[12] Xiaoqi Yang. Second-order global optimality conditions for convex composite optimization , 1998, Math. Program..
[13] Egon Balas,et al. MINIMAX AND DUALITY FOR LINEAR AND NONLINEAR MIXED-INTEGER PROGRAMMING , 1969 .
[14] W. Ziemba,et al. Generalized concavity in optimization and economics , 1981 .
[15] B. Mond,et al. A symmetric dual theorem for non-linear programs , 1965 .