Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I: Perfect Model Experiments

Abstract Through observing system simulation experiments, this two-part study exploits the potential of using the ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation. Part I focuses on the performance of the EnKF under the perfect model assumption in which the truth simulation is produced with the same model and same initial uncertainties as those of the ensemble, while Part II explores the impacts of model error and ensemble initiation on the filter performance. In this first part, the EnKF is implemented in a nonhydrostatic mesoscale model [the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5)] to assimilate simulated sounding and surface observations derived from simulations of the “surprise” snowstorm of January 2000. This is an explosive East Coast cyclogenesis event with strong error growth at all scales as a result of interactions between convective-, meso-, and subsynoptic-scale dynamics. It is found that the EnKF is very effective in keeping th...

[1]  G. Grell,et al.  A generalized approach to parameterizing convection combining ensemble and data assimilation techniques , 2002 .

[2]  Steven E. Koch,et al.  THE VALUE OF WIND PROFILER DATA IN U.S. WEATHER FORECASTING , 2004 .

[3]  H. Sorenson Least-squares estimation: from Gauss to Kalman , 1970, IEEE Spectrum.

[4]  T. Hamill,et al.  Analysis-Error Statistics of a Quasigeostrophic Model Using Three-Dimensional Variational Assimilation , 2002 .

[5]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[6]  M. Buehner Ensemble‐derived stationary and flow‐dependent background‐error covariances: Evaluation in a quasi‐operational NWP setting , 2005 .

[7]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[8]  Ryan D. Torn,et al.  Boundary Conditions for Limited-Area Ensemble Kalman Filters , 2006 .

[9]  A. Betts,et al.  A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets , 1986 .

[10]  D. Orrell,et al.  Role of the metric in forecast error growth: how chaotic is the weather? , 2002 .

[11]  Chris Snyder,et al.  A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for Radar Data Assimilation , 2005 .

[12]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[13]  Chris Snyder,et al.  Ensemble Kalman Filter Assimilation of Fixed Screen-Height Observations in a Parameterized PBL , 2005 .

[14]  Christopher A. Davis,et al.  Mesoscale Convective Vortices Observed during BAMEX. Part I: Kinematic and Thermodynamic Structure , 2004 .

[15]  J. Whitaker,et al.  Ensemble Forecasts and the Properties of Flow-Dependent Analysis-Error Covariance Singular Vectors , 2003 .

[16]  W. Cotton,et al.  Storm and Cloud Dynamics , 1992 .

[17]  D. Pham Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .

[18]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[19]  M. Rienecker,et al.  Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model , 2002 .

[20]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[21]  Louis J. Wicker,et al.  Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments , 2004 .

[22]  David J. Stensrud,et al.  Surface Data Assimilation Using an Ensemble Kalman Filter Approach with Initial Condition and Model Physics Uncertainties , 2005 .

[23]  Jeffrey S. Whitaker,et al.  Feasibility of a 100-Year Reanalysis Using Only Surface Pressure Data , 2006 .

[24]  R. J. Graham,et al.  Joint Medium-Range Ensembles from The Met. Office and ECMWF Systems , 2000 .

[25]  Fuqing Zhang,et al.  Ensemble‐based data assimilation for thermally forced circulations , 2005 .

[26]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[27]  Christian L. Keppenne,et al.  Assimilation of temperature into an isopycnal ocean general circulation model using a parallel ensemble Kalman filter , 2003 .

[28]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[29]  P. L. Houtekamer,et al.  Using ensemble forecasts for model validation , 1997 .

[30]  Wei Huang,et al.  A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results , 2004 .

[31]  Chris Snyder,et al.  Mesoscale Predictability of the “Surprise” Snowstorm of 24–25 January 2000 , 2002 .

[32]  J. Molinari,et al.  Incorporation of Cloud-Scale and Mesoscale Downdrafts into a Cumulus Parameterization: Results of One- and Three-Dimensional Integrations , 1985 .

[33]  David J. Stensrud,et al.  Using Initial Condition and Model Physics Perturbations in Short-Range Ensemble Simulations of Mesoscale Convective Systems , 2000 .

[34]  S. Zhang,et al.  Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model , 2003 .

[35]  C. Davis,et al.  Mesoscale Convective Vortices Observed during BAMEX. Part II: Influences on Secondary Deep Convection , 2007 .

[36]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[37]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[38]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[39]  M. Fisher,et al.  Background Error Covariance Modelling , 2003 .

[40]  Andrew C. Lorenc,et al.  The potential of the ensemble Kalman filter for NWP—a comparison with 4D‐Var , 2003 .

[41]  Kevin W. Manning,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis , 2004 .

[42]  Juanzhen Sun,et al.  Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter , 2004 .

[43]  Thomas M. Hamill,et al.  Ensemble Data Assimilation with the NCEP Global Forecast System , 2008 .

[44]  Leonard A. Smith,et al.  Nonlinear Processes in Geophysics Model Error in Weather Forecasting , 2022 .

[45]  Christian L. Keppenne,et al.  Data Assimilation into a Primitive-Equation Model with a Parallel Ensemble Kalman Filter , 2000 .

[46]  Fuqing Zhang,et al.  Probabilistic Evaluation of the Dynamics and Predictability of the Mesoscale Convective Vortex of 10–13 June 2003 , 2007 .

[47]  T. Palmer A nonlinear dynamical perspective on model error: A proposal for non‐local stochastic‐dynamic parametrization in weather and climate prediction models , 2001 .

[48]  D. M. Barker,et al.  Southern High-Latitude Ensemble Data Assimilation in the Antarctic Mesoscale Prediction System , 2005 .

[49]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[50]  A. Hollingsworth,et al.  Some aspects of the improvement in skill of numerical weather prediction , 2002 .

[51]  A. Arakawa The Cumulus Parameterization Problem: Past, Present, and Future , 2004 .

[52]  Thomas M. Hamill,et al.  Predictability of Weather and Climate: Ensemble-based atmospheric data assimilation , 2006 .

[53]  J. Whitaker,et al.  Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches , 2005 .

[54]  R. Rotunno,et al.  Effects of Moist Convection on Mesoscale Predictability , 2003 .

[55]  Yong-Run Guo,et al.  A Three-demiensional Variational (3DVAR) Data Assimilation System for Use With MM5 , 2003 .

[56]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[57]  G. Bryan,et al.  Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation , 2006 .

[58]  Fuqing Zhang,et al.  Dynamics and Structure of Mesoscale Error Covariance of a Winter Cyclone Estimated through Short-Range Ensemble Forecasts , 2005 .

[59]  Kozo Okamoto,et al.  Enhanced Use of Radiance Data in NCEP Data Assimilation Systems , 2003 .

[60]  Xue Wei,et al.  Reanalysis without Radiosondes Using Ensemble Data Assimilation , 2004 .

[61]  Ryan D. Torn,et al.  A Data Assimilation Case Study Using a Limited-Area Ensemble Kalman Filter , 2007 .

[62]  C. M. Kishtawal,et al.  Multimodel Ensemble Forecasts for Weather and Seasonal Climate , 2000 .

[63]  J. Kain,et al.  Comments on “Parameterization of Convective Precipitation in Mesoscale Numerical Models: A Critical Review” , 1994 .

[64]  G. Evensen,et al.  Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with , 1996 .

[65]  R. Daley Atmospheric Data Analysis , 1991 .

[66]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[67]  Zaviša I. Janić Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model , 2001 .

[68]  Fuqing Zhang,et al.  Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III: Comparison with 3DVAR in a Real-Data Case Study , 2008 .

[69]  Fuqing Zhang,et al.  Mesoscale predictability of an extreme warm-season precipitation event , 2006 .

[70]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[71]  N. Seaman,et al.  A Comparison Study of Convective Parameterization Schemes in a Mesoscale Model , 1997 .

[72]  Chris Snyder,et al.  ENSEMBLE-BASED DATA ASSIMILATION , 2007 .

[73]  Chris Snyder,et al.  Linear Evolution of Error Covariances in a Quasigeostrophic Model , 2003 .

[74]  R. Buizza,et al.  Application of a Limited-Area Short-Range Ensemble Forecast System to a Case of Heavy Rainfall in the Mediterranean Region , 2004 .

[75]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[76]  P. Houtekamer,et al.  Ensemble size, balance, and model-error representation in an ensemble Kalman filter , 2002 .

[77]  Roger Daley,et al.  Spectral Characteristics of Kalman Filter Systems for Atmospheric Data Assimilation , 1993 .

[78]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[79]  Mingjing Tong,et al.  Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model : OSS experiments , 2005 .

[80]  Song‐You Hong,et al.  Improvement of the K-profile Model for the Planetary Boundary Layer based on Large Eddy Simulation Data , 2003 .

[81]  James A. Hansen Accounting for Model Error in Ensemble-Based State Estimation and Forecasting , 2002 .

[82]  P. L. Houtekamer,et al.  A System Simulation Approach to Ensemble Prediction , 1996 .

[83]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[84]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[85]  Juanzhen Sun,et al.  Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed during IHOP_2002 , 2007 .

[86]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[87]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation with MM5 , 2006 .

[88]  C. Snyder,et al.  Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter , 2003 .