Dielectric constants of amorphous hafnium aluminates: First-principles study

Amorphous model structures of hafnium aluminate having a Hf content of 0.2 $(a\text{\ensuremath{-}}{\mathrm{Hf}}_{0.2}{\mathrm{Al}}_{0.8}{\mathrm{O}}_{1.6})$, alumina $(a\text{\ensuremath{-}}{\mathrm{Al}}_{2}{\mathrm{O}}_{3})$, and hafnia $(a\text{\ensuremath{-}}\mathrm{Hf}{\mathrm{O}}_{2})$ are theoretically generated, and dielectric responses of the amorphous model structures are studied by the first-principles method. The models have corner, edge, and face shared $\mathrm{Al}{\mathrm{O}}_{n}$ $(n=4\char21{}6)$ and $\mathrm{Hf}{\mathrm{O}}_{n}$ $(n=5\char21{}8)$ polyhedra, and the $a\text{\ensuremath{-}}{\mathrm{Hf}}_{0.2}{\mathrm{Al}}_{0.8}{\mathrm{O}}_{1.6}$ model structures are phase separated at the atomistic level, having ${\mathrm{Al}}_{2}{\mathrm{O}}_{3}$ and $\mathrm{Hf}{\mathrm{O}}_{2}$ domains. Calculated dielectric constants of the models increase with increasing Hf content, and the dielectric constant increase is dominated by the lattice polarization contribution to the dielectric constant. We found that low-frequency phonon modes having a frequency less than $200\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$ largely contribute to the high lattice dielectric constant and that inter-$\mathrm{Hf}{\mathrm{O}}_{2}$ domain vibrations and vibration of atoms in distorted metal-oxygen polyhedra are dominant in the modes.

[1]  D. Vanderbilt,et al.  Structural and dielectric properties of crystalline and amorphous ZrO2 , 2005 .

[2]  Tsuyoshi Uda,et al.  Theoretical study on dielectric response of amorphous alumina , 2006 .

[3]  Ivo Souza,et al.  Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics , 1997 .

[4]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[5]  Andre Stesmans,et al.  Determination of interface energy band diagram between (100)Si and mixed Al-Hf oxides using internal electron photoemission , 2003 .

[6]  K. Okada,et al.  Structural analysis of anodic alumina films , 1979 .

[7]  P. Lamparter,et al.  Structure of amorphous Al2O3 , 1997 .

[8]  E. Hernandez Metric-tensor flexible-cell algorithm for isothermal–isobaric molecular dynamics simulations , 2001 .

[9]  Tsuyoshi Uda,et al.  Effects of nitrogen atom doping on dielectric constants of Hf-based gate oxides , 2006 .

[10]  G. Rignanese,et al.  First-principles investigation of high-κ dielectrics: Comparison between the silicates and oxides of hafnium and zirconium , 2004 .

[11]  Hideki Takeuchi,et al.  Observation of bulk HfO2 defects by spectroscopic ellipsometry , 2004 .

[12]  Gian-Marco Rignanese,et al.  Dielectric properties of crystalline and amorphous transition metal oxides and silicates as potential high-κ candidates: the contribution of density-functional theory , 2005 .

[13]  J. Robertson High dielectric constant oxides , 2004 .

[14]  Martin L. Green,et al.  Hafnium oxide films by atomic layer deposition for high- κ gate dielectric applications: Analysis of the density of nanometer-thin films , 2005 .

[15]  Seiichi Miyazaki,et al.  Photoemission study of energy-band alignments and gap-state density distributions for high-k gate dielectrics , 2001 .

[16]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[17]  Lee,et al.  Thermal conductivity of sputtered oxide films. , 1995, Physical review. B, Condensed matter.

[18]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[19]  A. Uedono,et al.  Characterization of Hf0.3Al0.7Ox Fabricated by Atomic-Layer-Deposition Technique Using Monoenergetic Positron Beams , 2004 .

[20]  H. Herman,et al.  Ultra-rapid quenching of laser-melted binary and unary oxides , 1980 .

[21]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[22]  Binder,et al.  Cooling-rate effects in amorphous silica: A computer-simulation study. , 1996, Physical review. B, Condensed matter.

[23]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[24]  A. Starace Length and Velocity Formulas in Approximate Oscillator-Strength Calculations , 1971 .

[25]  Hao Gong,et al.  Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition , 2002 .

[26]  Gonzalo Gutiérrez,et al.  Molecular dynamics study of structural properties of amorphous Al 2 O 3 , 2002 .

[27]  A. Nishiyama,et al.  Effect of Film Composition of Nitrogen Incorporated Hafnium Aluminate (HfAlON) Gate Dielectric on Structural Transformation and Electrical Properties through High-Temperature Annealing , 2004 .

[28]  A. Devenyi,et al.  Structural order in amorphous aluminas , 1984 .

[29]  Kikuo Yamabe,et al.  First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high-k dielectrics , 2005 .

[30]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[31]  Stephen D. Bond,et al.  The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .

[32]  A. Toriumi,et al.  Dielectric constant enhancement due to Si incorporation into HfO2 , 2006 .

[33]  Alfredo Pasquarello,et al.  Dielectric constants of Zr silicates: a first-principles study. , 2002, Physical review letters.

[34]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[35]  A. Uedono,et al.  Characterizing Metal-Oxide Semiconductor Structures Consisting of HfSiOx as Gate Dielectrics using Monoenergetic Positron Beams , 2004 .

[36]  Tsuyoshi Uda,et al.  First-principles study of dielectric properties of cerium oxide , 2005 .

[37]  T. Ma,et al.  Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics , 2002, IEEE Electron Device Letters.

[38]  A. Curioni,et al.  Ab initio design of high-k dielectrics: La(x)Y1-xAlO3. , 2005, Physical review letters.

[39]  Hideki Takeuchi,et al.  Scaling limits of hafnium–silicate films for gate-dielectric applications , 2003 .

[40]  K. S. Shamala,et al.  Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method , 2004 .

[41]  I. Baumvol,et al.  Optical band gaps and composition dependence of hafnium–aluminate thin films grown by atomic layer chemical vapor deposition , 2005 .

[42]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[43]  David Vanderbilt,et al.  First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002 .

[44]  E. Cartier,et al.  Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues , 2001 .

[45]  M. Frey,et al.  Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides , 2004, Nature.

[46]  Masanori Matsui,et al.  Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2 , 1996 .

[47]  Kenji Shiraishi,et al.  Momentum-matrix-element calculation using pseudopotentials , 1997 .

[48]  P. McMillan Materials science: Flame-broiled alumina , 2004, Nature.