Effectiveness of Random Search in SVM hyper-parameter tuning
暂无分享,去创建一个
Bernd Bischl | André Carlos Ponce de Leon Ferreira de Carvalho | Rafael Gomes Mantovani | André Luis Debiaso Rossi | Joaquin Vanschoren | R. G. Mantovani | J. Vanschoren | A. Carvalho | B. Bischl | R. Mantovani | A. L. Rossi
[1] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Combining meta-learning and search techniques to select parameters for support vector machines , 2012, Neurocomputing.
[2] B. Lang,et al. Efficient optimization of support vector machine learning parameters for unbalanced datasets , 2006 .
[3] Kate Smith-Miles,et al. A meta-learning approach to automatic kernel selection for support vector machines , 2006, Neurocomputing.
[4] Goldberg,et al. Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.
[5] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[6] Luís Torgo,et al. OpenML: networked science in machine learning , 2014, SKDD.
[7] Sigrún Andradóttir,et al. A Review of Random Search Methods , 2015 .
[8] Luís Torgo,et al. OpenML: A Collaborative Science Platform , 2013, ECML/PKDD.
[9] Ching Y. Suen,et al. Optimization of the SVM Kernels Using an Empirical Error Minimization Scheme , 2002, SVM.
[10] Jason Weston,et al. A user's guide to support vector machines. , 2010, Methods in molecular biology.
[11] Carlos Soares,et al. A Meta-Learning Method to Select the Kernel Width in Support Vector Regression , 2004, Machine Learning.
[12] Thomas Stützle,et al. Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.
[13] Christian Igel,et al. Evolutionary tuning of multiple SVM parameters , 2005, ESANN.
[14] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Bio-inspired Optimization Techniques for SVM Parameter Tuning , 2008, 2008 10th Brazilian Symposium on Neural Networks.
[15] Bernd Bischl,et al. Tuning and evolution of support vector kernels , 2012, Evol. Intell..
[16] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[17] Yoshua Bengio,et al. Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..
[18] James Kennedy. Particle Swarms: Optimization Based on Sociocognition , 2005 .
[19] Martin Pelikan,et al. An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..
[20] Chih-Jen Lin,et al. A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.
[21] A. E. Eiben,et al. Efficient relevance estimation and value calibration of evolutionary algorithm parameters , 2007, 2007 IEEE Congress on Evolutionary Computation.
[22] Michèle Sebag,et al. Collaborative hyperparameter tuning , 2013, ICML.
[23] Oliviero Carugo,et al. Data Mining Techniques for the Life Sciences , 2009, Methods in Molecular Biology.
[24] David D. Cox,et al. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures , 2013, ICML.
[25] Sayan Mukherjee,et al. Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.
[26] Ljubomir J. Buturovic,et al. Cross-validation pitfalls when selecting and assessing regression and classification models , 2014, Journal of Cheminformatics.
[27] Kevin Leyton-Brown,et al. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.
[28] M. C. Monard,et al. A Note on Parameter Selection for Support Vector Machines , 2013, MICAI.