Self-healing umbrella sampling: convergence and efficiency

The Self-Healing Umbrella Sampling (SHUS) algorithm is an adaptive biasing algorithm which has been proposed in Marsili et al. (J Phys Chem B 110(29):14011–14013, 2006) in order to efficiently sample a multimodal probability measure. We show that this method can be seen as a variant of the well-known Wang–Landau algorithm Wang and Landau (Phys Rev E 64:056101, 2001a; Phys Rev Lett 86(10):2050–2053, 2001b). Adapting results on the convergence of the Wang-Landau algorithm obtained in Fort et al. (Math Comput 84(295):2297–2327, 2014a), we prove the convergence of the SHUS algorithm. We also compare the two methods in terms of efficiency. We finally propose a modification of the SHUS algorithm in order to increase its efficiency, and exhibit some similarities of SHUS with the well-tempered metadynamics method Barducci et al. (Phys Rev Lett 100:020,603, 2008).

[1]  Pierre E. Jacob,et al.  The Wang-Landau algorithm reaches the Flat Histogram criterion in finite time , 2014 .

[2]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[3]  D. Landau,et al.  Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  G. Fort,et al.  Convergence of adaptive and interacting Markov chain Monte Carlo algorithms , 2011, 1203.3036.

[5]  Gersende Fort,et al.  Central Limit Theorems for Stochastic Approximation with controlled Markov chain dynamics , 2013, 1309.3116.

[6]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[7]  Simone Marsili,et al.  Self-healing umbrella sampling: a non-equilibrium approach for quantitative free energy calculations. , 2006, The journal of physical chemistry. B.

[8]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[9]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[10]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[11]  Klaus Schulten,et al.  Reaction Pathways Based on the Gradient of the Mean First-Passage Time , 2002 .

[12]  A. Laio,et al.  Equilibrium free energies from nonequilibrium metadynamics. , 2006, Physical Review Letters.

[13]  Klaus Schulten,et al.  Reaction paths based on mean first-passage times , 2003 .

[14]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[15]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Tony Lelievre,et al.  Two mathematical tools to analyze metastable stochastic processes , 2012, 1201.3775.

[17]  Gersende Fort,et al.  Convergence of the Wang-Landau algorithm , 2015, Math. Comput..

[18]  Nicolas Chopin,et al.  Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors , 2010, Stat. Comput..

[19]  Frédéric Legoll,et al.  Free energy calculations: an efficient adaptive biasing potential method. , 2009, The journal of physical chemistry. B.

[20]  Eric Moulines,et al.  Stability of Stochastic Approximation under Verifiable Conditions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[21]  B. Jourdain,et al.  Efficiency of the Wang–Landau Algorithm: A Simple Test Case , 2013, 1310.6550.

[22]  Michele Parrinello,et al.  Well-tempered metadynamics converges asymptotically. , 2014, Physical review letters.

[23]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[24]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[25]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .