Geometric Metrics for Topological Representations

In this chapter, we present an overview of recent techniques from the emerging area of topological data analysis (TDA), with a focus on machine-learning applications. TDA methods are concerned with measuring shape-related properties of point-clouds and functions, in a manner that is invariant to topological transformations. With a careful design of topological descriptors, these methods can result in a variety of limited, yet practically useful, invariant representations. The generality of this approach results in a flexible design choice for practitioners interested in developing invariant representations from diverse data sources such as image, shapes, and time-series data. We present a survey of topological representations and metrics on those representations, discuss their relative pros and cons, and illustrate their impact on a few application areas of recent interest.

[1]  H. Krim,et al.  Applied topology in static and dynamic sensor networks , 2012, 2012 International Conference on Signal Processing and Communications (SPCOM).

[2]  Guo-Wei Wei,et al.  Integration of element specific persistent homology and machine learning for protein‐ligand binding affinity prediction , 2018, International journal for numerical methods in biomedical engineering.

[3]  Shaneka S. Lawson,et al.  Microsatellite Borders and Micro-sequence Conservation in Juglans , 2019, Scientific Reports.

[4]  Peter Bubenik,et al.  The Persistence Landscape and Some of Its Properties , 2018, Topological Data Analysis.

[5]  E. Munch A User's Guide to Topological Data Analysis , 2017, J. Learn. Anal..

[6]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[7]  Matthew Berger,et al.  On Time-Series Topological Data Analysis: New Data and Opportunities , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[8]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[9]  Zhen Zhou,et al.  Exploring generalized shape analysis by topological representations , 2017, Pattern Recognit. Lett..

[10]  Harald Oberhauser,et al.  Persistence Paths and Signature Features in Topological Data Analysis , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Ulrich Bauer,et al.  On the Metric Distortion of Embedding Persistence Diagrams into Reproducing Kernel Hilbert Spaces , 2018, ArXiv.

[12]  Tamal K. Dey,et al.  Protein Classification with Improved Topological Data Analysis , 2018, WABI.

[13]  Maks Ovsjanikov,et al.  Persistence-Based Structural Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[15]  R. Ho Algebraic Topology , 2022 .

[16]  Ananthram Swami,et al.  Simplifying the homology of networks via strong collapses , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[17]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[18]  Frédéric Chazal,et al.  Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..

[19]  F. Takens Detecting strange attractors in turbulence , 1981 .

[20]  Maxime Gabella,et al.  Topology of Learning in Feedforward Neural Networks , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[21]  N. Makarenko,et al.  Texture recognition by the methods of topological data analysis , 2016 .

[22]  A. Yuille,et al.  Dense Scale Invariant Descriptors for Images and Surfaces , 2012 .

[23]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[24]  Kelin Xia A quantitative structure comparison with persistent similarity , 2017, 1707.03572.

[25]  Steve Oudot,et al.  Persistence-Based Pooling for Shape Pose Recognition , 2016, CTIC.

[26]  Primoz Skraba,et al.  Topological Analysis of Recurrent Systems , 2012, NIPS 2012.

[27]  Wei Guo,et al.  Sparse-TDA: Sparse Realization of Topological Data Analysis for Multi-Way Classification , 2018, IEEE Transactions on Knowledge and Data Engineering.

[28]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  L. Wasserman Topological Data Analysis , 2016, 1609.08227.

[30]  Dimitri P. Bertsekas,et al.  A new algorithm for the assignment problem , 1981, Math. Program..

[31]  Karthikeyan Natesan Ramamurthy,et al.  Perturbation Robust Representations of Topological Persistence Diagrams , 2018, ECCV.

[32]  Wlodek Zadrozny,et al.  Topological Signature of 19th Century Novelists: Persistent Homology in Text Mining , 2018, Big Data Cogn. Comput..

[33]  Ulrich Bauer,et al.  PHAT - Persistent Homology Algorithms Toolbox , 2014, ICMS.

[34]  Guo-Wei Wei,et al.  A topological approach for protein classification , 2015, 1510.00953.

[35]  Hamid Krim,et al.  Persistent Homology of Delay Embeddings and its Application to Wheeze Detection , 2014, IEEE Signal Processing Letters.

[36]  Jesse Berwald,et al.  Critical Transitions In a Model of a Genetic Regulatory System , 2013, ArXiv.

[37]  Jose A. Perea Persistent homology of toroidal sliding window embeddings , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[38]  Vasileios Maroulas,et al.  Signal classification with a point process distance on the space of persistence diagrams , 2018, Adv. Data Anal. Classif..

[39]  Herbert Edelsbrunner,et al.  A Short Course in Computational Geometry and Topology , 2014 .

[40]  Karthikeyan Natesan Ramamurthy,et al.  A Riemannian Framework for Statistical Analysis of Topological Persistence Diagrams , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[41]  Heng Huang,et al.  Video Motion Segmentation Using New Adaptive Manifold Denoising Model , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Steve Oudot,et al.  Sliced Wasserstein Kernel for Persistence Diagrams , 2017, ICML.

[43]  Ulrich Bauer,et al.  Distributed Computation of Persistent Homology , 2014, ALENEX.

[44]  Mariette Yvinec,et al.  The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.

[45]  Guo-Wei Wei,et al.  Rigidity Strengthening: A Mechanism for Protein-Ligand Binding , 2017, J. Chem. Inf. Model..

[46]  Peter Bubenik,et al.  Statistical Inferences from the Topology of Complex Networks , 2016 .

[47]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[48]  Xiaojin Zhu,et al.  Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing , 2013, IJCAI.

[49]  Yuhei Umeda,et al.  Time Series Classification via Topological Data Analysis , 2017, Inf. Media Technol..

[50]  Michael Werman,et al.  Affine Invariance Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[51]  Lek-Heng Lim,et al.  Schubert Varieties and Distances between Subspaces of Different Dimensions , 2014, SIAM J. Matrix Anal. Appl..

[52]  Brittany Terese Fasy,et al.  Introduction to the R package TDA , 2014, ArXiv.

[53]  Jong Chul Ye,et al.  Beyond Deep Residual Learning for Image Restoration: Persistent Homology-Guided Manifold Simplification , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[54]  Nan Jiang,et al.  Know Your Enemy, Know Yourself: Block-Level Network Behavior Profiling and Tracking , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[55]  Stephen Smale,et al.  A Topological View of Unsupervised Learning from Noisy Data , 2011, SIAM J. Comput..

[56]  Katharine Turner,et al.  Principal component analysis of persistent homology rank functions with case studies of spatial point patterns, sphere packing and colloids , 2015, 1507.01454.

[57]  Bruce A. Draper,et al.  A flag representation for finite collections of subspaces of mixed dimensions , 2014 .

[58]  Moo K. Chung,et al.  Persistence Diagrams of Cortical Surface Data , 2009, IPMI.

[59]  Imre Lakatos,et al.  On the Uses of Rigorous Proof. (Book Reviews: Proofs and Refutations. The Logic of Mathematical Discovery) , 1977 .

[60]  Anuj Srivastava,et al.  Optimal linear representations of images for object recognition , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[61]  Mikael Vejdemo-Johansson,et al.  Automatic recognition and tagging of topologically different regimes in dynamical systems , 2013, ArXiv.

[62]  Radmila Sazdanovic,et al.  A topological collapse for document summarization , 2016, 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[63]  Emanuela Merelli,et al.  Characterisation of the Idiotypic Immune Network Through Persistent Entropy , 2014, ECCS.

[64]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[65]  Chao Chen,et al.  Algebraic topology for computer vision , 2009 .

[66]  Moo K. Chung,et al.  Topology-Based Kernels With Application to Inference Problems in Alzheimer's Disease , 2011, IEEE Transactions on Medical Imaging.

[67]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[68]  Y. Chikuse Statistics on special manifolds , 2003 .

[69]  Marc Pollefeys,et al.  A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.

[70]  Karthikeyan Natesan Ramamurthy,et al.  Persistent homology of attractors for action recognition , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[71]  Leonidas J. Guibas,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm250 Structural bioinformatics Persistent voids: a new structural metric for membrane fusion , 2022 .

[72]  Xiaojin Zhu,et al.  Stochastic Multiresolution Persistent Homology Kernel , 2016, IJCAI.

[73]  Tamal K. Dey,et al.  Improved Image Classification using Topological Persistence , 2017, VMV.

[74]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[75]  Pavan K. Turaga,et al.  Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  J. Meiss,et al.  Exploring the topology of dynamical reconstructions , 2015, 1506.01128.

[77]  Pierpaolo Brutti,et al.  Supervised learning with indefinite topological Kernels , 2017, Statistics.

[78]  Lihi Zelnik-Manor,et al.  Approximate Nearest Subspace Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Aldenor G. Santos,et al.  Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles , 2019, Scientific Reports.

[80]  Elizabeth Bradley,et al.  Computational Topology Techniques for Characterizing Time-Series Data , 2017, IDA.

[81]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[82]  Pavan K. Turaga,et al.  Attractor-shape descriptors for balance impairment assessment in Parkinson's disease , 2016, EMBC.

[83]  Y. Wong Differential geometry of grassmann manifolds. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[85]  Emanuela Merelli,et al.  jHoles: A Tool for Understanding Biological Complex Networks via Clique Weight Rank Persistent Homology , 2014, CS2Bio.

[86]  Brittany Terese Fasy,et al.  Persistent Homology for the Quantitative Evaluation of Architectural Features in Prostate Cancer Histology , 2019, Scientific Reports.

[87]  Brittany Terese Fasy,et al.  Persistent homology for the automatic classification of prostate cancer aggressiveness in histopathology images , 2019, Medical Imaging.

[88]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[89]  Karthikeyan Natesan Ramamurthy,et al.  Multiscale evolution of attractor-shape descriptors for assessing Parkinson's disease severity , 2017, 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[90]  Leonidas J. Guibas,et al.  Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.

[91]  Vijay S. Pande,et al.  Persistent Topology and Metastable State in Conformational Dynamics , 2013, PloS one.

[92]  Yu-Min Chung,et al.  Persistence Curves: A canonical framework for summarizing persistence diagrams , 2019, Advances in Computational Mathematics.

[93]  Makoto Yamada,et al.  Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams , 2018, NeurIPS.

[94]  Markus Seidl,et al.  Topological Descriptors for 3D Surface Analysis , 2016, CTIC.

[95]  I. Lakatos,et al.  Proofs and Refutations: Frontmatter , 1976 .

[96]  Yang Song,et al.  Early mastitis diagnosis through topological analysis of biosignals from low-voltage alternate current electrokinetics , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[97]  Valerio Pascucci,et al.  Branching and Circular Features in High Dimensional Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[98]  Patrizio Frosini,et al.  Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval , 2011, Pattern Recognit. Lett..

[99]  Afra Zomorodian,et al.  Fast construction of the Vietoris-Rips complex , 2010, Comput. Graph..

[100]  Hubert Mara,et al.  Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures , 2012, IEEE Transactions on Visualization and Computer Graphics.

[101]  João Paulo Costeira,et al.  The Normalized Subspace Inclusion: Robust clustering of motion subspaces , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[102]  Roberto Manduchi,et al.  A theory of color barcodes , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[103]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[104]  Clint P. George,et al.  Principled Selection of Hyperparameters in the Latent Dirichlet Allocation Model , 2017, J. Mach. Learn. Res..

[105]  Guo-Wei Wei,et al.  Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening , 2017, PLoS Comput. Biol..

[106]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[107]  Rickard Brüel Gabrielsson,et al.  Exposition and Interpretation of the Topology of Neural Networks , 2018, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[108]  Yasuaki Hiraoka,et al.  Persistence diagrams with linear machine learning models , 2017, Journal of Applied and Computational Topology.

[109]  Marian Gidea,et al.  Topology Data Analysis of Critical Transitions in Financial Networks , 2017, 1701.06081.

[110]  Bartosz Zielinski,et al.  Persistence codebooks for topological data analysis , 2018, Artificial Intelligence Review.

[111]  David B. A. Epstein,et al.  Fast and Accurate Tumor Segmentation of Histology Images using Persistent Homology and Deep Convolutional Features , 2018, Medical Image Anal..

[112]  Liwei Wang,et al.  Further results on the subspace distance , 2007, Pattern Recognit..

[113]  Liwei Wang,et al.  Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition , 2006, Pattern Recognit..

[114]  X. Liu,et al.  A fast algorithm for constructing topological structure in large data , 2012 .

[115]  Baoshu Xu,et al.  Grassmann manifold based shape matching and retrieval under partial occlusions , 2014, Other Conferences.

[116]  Aaron B. Adcock,et al.  The Ring of Algebraic Functions on Persistence Bar Codes , 2013, 1304.0530.

[117]  Marian Gidea,et al.  Topological Data Analysis of Financial Time Series: Landscapes of Crashes , 2017, 1703.04385.

[118]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[119]  Henry Adams,et al.  Evasion paths in mobile sensor networks , 2013, Int. J. Robotics Res..

[120]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[121]  Guo-Wei Wei,et al.  Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology , 2017, Bioinform..

[122]  Pawel Dlotko,et al.  A persistence landscapes toolbox for topological statistics , 2014, J. Symb. Comput..

[123]  Guo-Wei Wei,et al.  TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions , 2017, PLoS Comput. Biol..

[124]  Chul Moon,et al.  Persistent Homology Machine Learning for Fingerprint Classification , 2017, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[125]  Kenji Fukumizu,et al.  Persistence weighted Gaussian kernel for topological data analysis , 2016, ICML.

[126]  V. Maroulas,et al.  Bayesian Inference for Persistent Homology , 2019, 1901.02034.

[127]  Mubarak Shah,et al.  Learning a Deep Model for Human Action Recognition from Novel Viewpoints , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[128]  Rodrigo Fernandes de Mello,et al.  Persistent homology for time series and spatial data clustering , 2015, Expert Syst. Appl..

[129]  Sara Kalisnik,et al.  Tropical Coordinates on the Space of Persistence Barcodes , 2019, Found. Comput. Math..