Optimal Finite-Horizon Perturbation Policy for Inference of Gene Regulatory Networks

[1]  D. Husmeier,et al.  Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge , 2007, Statistical applications in genetics and molecular biology.

[2]  Daizhan Cheng,et al.  Controllability and observability of Boolean control networks , 2009, Autom..

[3]  Ulisses Braga-Neto,et al.  ParticleFilters for Partially-ObservedBooleanDynamical Systems , 2017 .

[4]  Galit Lahav,et al.  The ups and downs of p53: understanding protein dynamics in single cells , 2009, Nature Reviews Cancer.

[5]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[6]  V. Thorsson,et al.  Discovery of regulatory interactions through perturbation: inference and experimental design. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[7]  Rudiyanto Gunawan,et al.  Optimal design of gene knockout experiments for gene regulatory network inference , 2015, Bioinform..

[8]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[9]  Rudiyanto Gunawan,et al.  Iterative approach to model identification of biological networks , 2005, BMC Bioinformatics.

[10]  Dirk Husmeier,et al.  Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks , 2003, Bioinform..

[11]  Edward R. Dougherty,et al.  Boolean Kalman filter and smoother under model uncertainty , 2020, Autom..

[12]  Edward R. Dougherty,et al.  From Boolean to probabilistic Boolean networks as models of genetic regulatory networks , 2002, Proc. IEEE.

[13]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[14]  Chao Sima,et al.  Inference of Gene Regulatory Networks Using Time-Series Data: A Survey , 2009, Current genomics.

[15]  Georgios B. Giannakis,et al.  Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations , 2013, PLoS Comput. Biol..

[16]  Ulisses Braga-Neto,et al.  Optimal gene regulatory network inference using the Boolean Kalman filter and multiple model adaptive estimation , 2015, 2015 49th Asilomar Conference on Signals, Systems and Computers.

[17]  G. Berx,et al.  Regulatory networks defining EMT during cancer initiation and progression , 2013, Nature Reviews Cancer.

[18]  Jeffrey A. Fessler,et al.  Ieee Transactions on Image Processing: to Appear Globally Convergent Algorithms for Maximum a Posteriori Transmission Tomography , 2022 .