Robust Visual Tracking Using Structurally Random Projection and Weighted Least Squares

Sparse representation-based visual tracking approaches have attracted increasing interests in the community in recent years. The main idea is to linearly represent each target candidate using a set of target and trivial templates, while imposing a sparsity constraint onto the representation coefficients. After we obtain the coefficients using ℓ1-norm minimization methods, the candidate with the lowest error, when it is reconstructed using only the target templates and the associated coefficients, is considered as the tracking result. In spite of promising system performance widely reported, it is unclear if the performance of these trackers can be maximized. In addition, computational complexity caused by the dimensionality of the feature space limits these algorithms in real-time applications. In this paper, we propose a real-time visual tracking method based on structurally random projection (RP) and weighted least squares (WLS) techniques. In particular, to enhance the discriminative capability of the tracker, we introduce background templates to the linear representation framework. To handle appearance variations over time, we relax the sparsity constraint using a WLS method to obtain the representation coefficients. To further reduce the computational complexity, structurally RP is used to reduce the dimensionality of the feature space, while preserving the pairwise distances between the data points in the feature space. Experimental results show that the proposed approach outperforms several state-of-the-art tracking methods.

[1]  Qi Wang,et al.  Multi-cue based tracking , 2014, Neurocomputing.

[2]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[4]  Bin Shen,et al.  Visual Tracking via Online Nonnegative Matrix Factorization , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[5]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[6]  Xinbo Gao,et al.  Incremental tensor biased discriminant analysis: A new color-based visual tracking method , 2010, Neurocomputing.

[7]  Ramakant Nevatia,et al.  Multi-target tracking by on-line learned discriminative appearance models , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Alan Fern,et al.  Discriminatively trained particle filters for complex multi-object tracking , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Xuelong Li,et al.  Tracking vehicles as groups in airborne videos , 2013, Neurocomputing.

[10]  Pong C. Yuen,et al.  Multi-cue Visual Tracking Using Robust Feature-Level Fusion Based on Joint Sparse Representation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[12]  Yi Zhang,et al.  Adaptive fusion of particle filtering and spatio-temporal motion energy for human tracking , 2014, Pattern Recognit..

[13]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[14]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[15]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[16]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Shengping Zhang,et al.  Online Dictionary Learning on Symmetric Positive Definite Manifolds with Vision Applications , 2015, AAAI.

[18]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[19]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[20]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[21]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Min Yang,et al.  Metric Learning Based Structural Appearance Model for Robust Visual Tracking , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[24]  Xuelong Li,et al.  Linear Tracking for 3-D Medical Ultrasound Imaging , 2013, IEEE Transactions on Cybernetics.

[25]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[26]  Carlo S. Regazzoni,et al.  GHT based implementation of the expectation maximization for mixtures of multi-Gaussians and its applications to video tracking , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[27]  Russell V. Lenth,et al.  Statistical Analysis With Missing Data (2nd ed.) (Book) , 2004 .

[28]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[29]  Chunhong Pan,et al.  Visual Tracking Via Kernel Sparse Representation With Multikernel Fusion , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[30]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Jun Zhang,et al.  Adaptive NormalHedge for robust visual tracking , 2015, Signal Process..

[33]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Yuan Xie,et al.  Discriminative Object Tracking via Sparse Representation and Online Dictionary Learning , 2014, IEEE Transactions on Cybernetics.

[35]  Carlo S. Regazzoni,et al.  A Bayesian Network for online evaluation of sparse features based multitarget tracking , 2012, 2012 19th IEEE International Conference on Image Processing.

[36]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[37]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[38]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[39]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[40]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[41]  Yi Zhang,et al.  Non-rigid object tracking in complex scenes , 2009, Pattern Recognit. Lett..

[42]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[43]  Qi Wang,et al.  Part-Based Online Tracking With Geometry Constraint and Attention Selection , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[44]  Pingkun Yan,et al.  Robust visual tracking with discriminative sparse learning , 2013, Pattern Recognit..

[45]  Pascal Fua,et al.  Fast texture-based tracking and delineation using texture entropy , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[46]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[47]  Qixiang Ye,et al.  Combined feature evaluation for adaptive visual object tracking , 2011, Comput. Vis. Image Underst..

[48]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[49]  Youfu Li,et al.  Robust visual tracking with structured sparse representation appearance model , 2012, Pattern Recognit..

[50]  Shengping Zhang,et al.  Robust visual tracking based on online learning sparse representation , 2013, Neurocomputing.

[51]  Xuelong Li,et al.  Incremental pairwise discriminant analysis based visual tracking , 2010, Neurocomputing.

[52]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Baochang Zhang,et al.  Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR) , 2011, Pattern Recognit..

[54]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Qi Wang,et al.  Robust Superpixel Tracking via Depth Fusion , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[57]  Trac D. Tran,et al.  Fast and Efficient Compressive Sensing Using Structurally Random Matrices , 2011, IEEE Transactions on Signal Processing.

[58]  Bernard Chazelle,et al.  Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.

[59]  Trac D. Tran,et al.  Fast compressive sampling with structurally random matrices , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[60]  Xuelong Li,et al.  Vehicle detection and tracking in airborne videos by multi-motion layer analysis , 2011, Machine Vision and Applications.

[61]  Huchuan Lu,et al.  Robust Visual Tracking via Multiple Kernel Boosting With Affinity Constraints , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[62]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[63]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.