Characterizations of Categories of Commutative C*-Subalgebras

We aim to characterize the category of injective *-homomorphisms between commutative C*-subalgebras of a given C*-algebra A. We reduce this problem to finding a weakly terminal commutative subalgebra of A, and solve the latter for various C*-algebras, including all commutative ones and all type I von Neumann algebras. This addresses a natural generalization of the Mackey–Piron programme: which lattices are those of closed subspaces of Hilbert space? We also discuss the way this categorified generalization differs from the original question.

[1]  Chris Heunen,et al.  Active lattices determine AW*−algebras , 2012, 1212.5778.

[2]  C. Heunen,et al.  No-go theorems for functorial localic spectra of noncommutative rings , 2011, 1101.5924.

[3]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[4]  P. A. Firby Lattices and Compactifications, III , 1973 .

[5]  Bas Spitters,et al.  Deep Beauty: Bohrification , 2011 .

[6]  C. Piron,et al.  On the Foundations of Quantum Physics , 1976 .

[7]  CHARACTERIZATIONS OF PARTITION LATTICES , 1994 .

[8]  Miklós Rédei,et al.  Quantum Logic in Algebraic Approach , 1998 .

[9]  Chris Heunen,et al.  Noncommutativity as a Colimit , 2010, Appl. Categorical Struct..

[10]  K. Davidson C*-algebras by example , 1996 .

[11]  Chris Heunen,et al.  Diagonalizing matrices over AW*−algebras , 2013 .

[12]  A. Sinclair,et al.  Finite Von Neumann Algebras and Masas , 2008 .

[13]  J. Funk Semigroups and Toposes , 2007 .

[14]  Jan Hamhalter,et al.  Isomorphisms of ordered structures of abelian C⁎-subalgebras of C⁎-algebras , 2011 .

[15]  J. Hamhalter,et al.  STRUCTURE OF ASSOCIATIVE SUBALGEBRAS OF JORDAN OPERATOR ALGEBRAS , 2011 .

[16]  On some types of maximal abelian subalgebras , 1972 .

[17]  G. Kalmbach On Orthomodular Lattices , 1990 .

[18]  Andreas Blass,et al.  Mobius functions of lattices , 1997 .

[19]  M. P. Soler,et al.  Characterization of hilbert spaces by orthomodular spaces , 1995 .

[20]  Chris Heunen Complementarity in Categorical Quantum Mechanics , 2010 .

[21]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[22]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[23]  D. Bures Abelian subalgebras of Von Neumann algebras , 1971 .

[24]  Chris J. Isham Deep Beauty: Topos Methods in the Foundations of Physics , 2011 .

[25]  John Harding,et al.  Abelian subalgebras and the Jordan structure of a von Neumann algebra , 2010, 1009.4945.

[26]  Bas Spitters,et al.  A Topos for Algebraic Quantum Theory , 2007, 0709.4364.

[27]  Gudrun Kalmbach Measures and Hilbert Lattices , 1986 .