On the Co-PI and Laplacian Co-PI eigenvalues of a graph

In this paper we present an equivalent definition of Co-PI index and then determine the eigenvalues of Co-PI matrices and their Laplacians of Cartesian product graphs, including bounds on the second and third Co-PI spectral moment of a graph. The explicit formulae for the Co-PI index of Cartesian product graphs are also presented.

[1]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[2]  Ali Reza Ashrafi,et al.  On the Szeged and the Laplacian Szeged spectrum of a graph , 2010 .

[3]  Sandi Klavžar,et al.  The Szeged and the Wiener Index of Graphs , 1996 .

[4]  Guoping Wang,et al.  Vertex PI indices of some sums of graphs , 2011, Ars Comb..

[5]  Fang Duan,et al.  Hyper- and reverse-Wiener indices of F-sums of graphs , 2010, Discret. Appl. Math..

[6]  Ivan Gutman,et al.  On the sum of all distances in composite graphs , 1994, Discret. Math..

[7]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[8]  Toufik Mansour,et al.  The vertex PI index and Szeged index of bridge graphs , 2009, Discret. Appl. Math..

[9]  Elkin Vumar,et al.  Wiener and vertex PI indices of Kronecker products of graphs , 2010, Discret. Appl. Math..

[10]  Ali Iranmanesh,et al.  COMPUTATION OF THE FIRST VERTEX OF CO-PI INDEX OF TUC4C8(S) NANOTUBES , 2010 .

[11]  Ali Reza Ashrafi,et al.  Vertex and edge PI indices of Cartesian product graphs , 2008, Discret. Appl. Math..

[12]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[13]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[14]  S. R. Searle,et al.  On the history of the kronecker product , 1983 .

[15]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[16]  H. Wiener Correlation of Heats of Isomerization, and Differences in Heats of Vaporization of Isomers, Among the Paraffin Hydrocarbons , 1947 .

[17]  Yongge Tian,et al.  Some rank equalities and inequalities for Kronecker products of matrices , 2005 .

[18]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[19]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[20]  P. Paulraja,et al.  On some topological indices of the tensor products of graphs , 2012, Discret. Appl. Math..

[21]  N. Biggs Algebraic Graph Theory , 1974 .

[22]  Andrey A. Dobrynin,et al.  The Szeged Index and an Analogy with the Wiener Index , 1995, J. Chem. Inf. Comput. Sci..

[23]  Ante Graovac,et al.  On the Wiener index of a graph , 1991 .

[24]  Guoping Wang,et al.  Vertex PI indices of four sums of graphs , 2011, Discret. Appl. Math..

[25]  Zhifu You,et al.  The (Weighted) Vertex PI Index of Unicyclic Graphs , 2012 .

[26]  Padmakar V. Khadikar,et al.  Relationships and relative correlation potential of the Wiener, Szeged and PI indices , 2000 .

[27]  A. Ashrafi,et al.  PI INDEX OF ZIG-ZAG POLYHEX NANOTUBES , 2006 .

[28]  Padmakar V. Khadikar,et al.  A Novel PI Index and Its Applications to QSPR/QSAR Studies , 2001, J. Chem. Inf. Comput. Sci..