GEOS‐S2S Version 2: The GMAO High‐Resolution Coupled Model and Assimilation System for Seasonal Prediction

The Global Modeling and Assimilation Office (GMAO) has recently released a new version of the Goddard Earth Observing System (GEOS) Sub-seasonal to Seasonal prediction (S2S) system, GEOS-S2S-2, that represents a substantial improvement in performance and infrastructure over the previous system. The system is described here in detail, and results are presented from forecasts, climate equillibrium simulations and data assimilation experiments. The climate or equillibrium state of the atmosphere and ocean showed a substantial reduction in bias relative to GEOS-S2S-1. The GEOS-S2S-2 coupled reanalysis also showed substantial improvements, attributed to the assimilation of along-track Absolute Dynamic Topography. The forecast skill on subseasonal scales showed a much-improved prediction of the Madden-Julian Oscillation in GEOS-S2S-2, and on a seasonal scale the tropical Pacific forecasts show substantial improvement in the east and comparable skill to GEOS-S2S-1 in the central Pacific. GEOS-S2S-2 anomaly correlations of both land surface temperature and precipitation were comparable to GEOS-S2S-1, and showed substantially reduced root mean square error of surface temperature. The remaining issues described here are being addressed in the development of GEOS-S2S Version 3, and with that system GMAO will continue its tradition of maintaining a state of the art seasonal prediction system for use in evaluating the impact on seasonal and decadal forecasts of assimilating newly available satellite observations, as well as to evaluate additional sources of predictability in the earth system through the expanded coupling of the earth system model and assimilation components.

[1]  Duane E. Waliser,et al.  Potential Predictability of the Madden–Julian Oscillation , 2003 .

[2]  Benjamin W. Green,et al.  The Subseasonal Experiment (SubX): A Multimodel Subseasonal Prediction Experiment , 2019, Bulletin of the American Meteorological Society.

[3]  W. Large,et al.  Open Ocean Momentum Flux Measurements in Moderate to Strong Winds , 1981 .

[4]  M. England,et al.  On the Interannual Variability of the Indonesian Throughflow and Its Linkage with ENSO , 2005 .

[5]  Peter R. Oke,et al.  Ocean data assimilation: a case for ensemble optimal interpolation , 2010 .

[6]  Jennifer A. Francis,et al.  Has Arctic Sea Ice Loss Contributed to Increased Surface Melting of the Greenland Ice Sheet , 2016 .

[7]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[8]  A. da Silva,et al.  Direct and semi‐direct aerosol effects in the NASA GEOS‐5 AGCM: aerosol‐climate interactions due to prognostic versus prescribed aerosols , 2013 .

[9]  Ron Kwok,et al.  Uncertainty in modeled Arctic sea ice volume , 2011 .

[10]  I. Simmonds,et al.  The central role of diminishing sea ice in recent Arctic temperature amplification , 2010, Nature.

[11]  G. Meyers,et al.  Geostrophic transport of Indonesian throughflow , 1995 .

[12]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[13]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[14]  J. Stroeve,et al.  400 predictions: the SEARCH Sea Ice Outlook 2008–2015 , 2016 .

[15]  J. Wallace,et al.  Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter , 1981 .

[16]  Angela Benedetti,et al.  Can the Direct Effect of Aerosols Improve Subseasonal Predictability? , 2018, Monthly Weather Review.

[17]  Becky Alexander,et al.  Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations , 2010 .

[18]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[19]  David M. Lawrence,et al.  The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century , 2010 .

[20]  J. Marshak,et al.  GEOS-5 seasonal forecast system , 2017, Climate Dynamics.

[21]  M. Iredell,et al.  The NCEP Climate Forecast System Version 2 , 2014 .

[22]  S. Serrar,et al.  Arctic influence on subseasonal midlatitude prediction , 2014 .

[23]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[24]  Andy Aschwanden,et al.  Greenland ice sheet mass balance: a review , 2015, Reports on progress in physics. Physical Society.

[25]  Seong-Joong Kim,et al.  The Melting Arctic and Midlatitude Weather Patterns: Are They Connected?* , 2015 .

[26]  Saudi Arabia,et al.  The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via , 2013 .

[27]  S. Schubert,et al.  Warm Season Subseasonal Variability and Climate Extremes in the Northern Hemisphere: The Role of Stationary Rossby Waves , 2011 .

[28]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[29]  J. S. Godfrey,et al.  A 20-Yr Average of the Indonesian Throughflow: Regional Currents and the Interbasin Exchange , 2008 .

[30]  Gary B. Brassington,et al.  Progress and challenges in short- to medium-range coupled prediction , 2015 .

[31]  James R. Campbell,et al.  Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis , 2014 .

[32]  M. Rienecker,et al.  Background Error Covariance Estimation Using Information from a Single Model Trajectory with Application to Ocean Data Assimilation , 2014 .

[33]  J. Sprintall,et al.  Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006 , 2009 .

[34]  Rüdiger Gerdes,et al.  Formulation of an ocean model for global climate simulations , 2005 .

[35]  L. Oman,et al.  Large‐Scale Atmospheric Transport in GEOS Replay Simulations , 2017 .

[36]  C. Frantzidis,et al.  Response to Reviewers Reviewer #1 , 2010 .

[37]  Norman A. McFarlane,et al.  The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere , 1987 .

[38]  Steffen Tietsche,et al.  Will Arctic sea ice thickness initialization improve seasonal forecast skill? , 2014 .

[39]  T. Stockdale Coupled Ocean–Atmosphere Forecasts in the Presence of Climate Drift , 1997 .

[40]  Matthieu Chevallier,et al.  The Role of Sea Ice Thickness Distribution in the Arctic Sea Ice Potential Predictability: A Diagnostic Approach with a Coupled GCM , 2012 .

[41]  S. Schubert,et al.  Climatology of the Simulated Great Plains Low-Level Jet and Its Contribution to the Continental Moisture Budget of the United States , 1995 .

[42]  J. Bacmeister,et al.  Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5) , 2013 .

[43]  Marc Lynch-Stieglitz,et al.  The development and validation of a simple snow model for the GISS GCM , 1994 .

[44]  Fei-Fei Jin,et al.  An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model , 1997 .

[45]  C. Shum,et al.  THE ACCURACY AND APPLICATIONS OF SATELLITE ALTIMETRY , 1995 .

[46]  J. Boulanger,et al.  Geosat-derived sea level and surface current anomalies in the equatorial Pacific during the 1986–1989 El Niño and La Niña , 1994 .

[47]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[48]  R. Barry,et al.  Processes and impacts of Arctic amplification: A research synthesis , 2011 .

[49]  Antonio J. Busalacchi,et al.  A TOGA Retrospective , 2010 .

[50]  Paul J. Kushner,et al.  Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models , 2018, Nature Geoscience.

[51]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[52]  P. Heimbach,et al.  Seasonal variability of submarine melt rate and circulation in an East Greenland fjord , 2013 .

[53]  Stephen G. Penny,et al.  Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation , 2016 .

[54]  Chris Hill,et al.  MAPL: a high-level programming paradigm to support more rapid and robust encoding of hierarchical trees of interacting high-performance components , 2007, CompFrame '07.

[55]  Adrian Hines,et al.  Assessing a New Coupled Data Assimilation System Based on the Met Office Coupled Atmosphere–Land–Ocean–Sea Ice Model , 2015 .

[56]  Istvan Szunyogh,et al.  A local ensemble Kalman filter for atmospheric data assimilation , 2004 .

[57]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[58]  Jean-Noël Thépaut,et al.  Impact of Scatterometer Surface Wind Data in the ECMWF Coupled Assimilation System , 2016 .

[59]  A. Barnston,et al.  Toward an Improved Multimodel ENSO Prediction , 2015 .

[60]  Masayuki Nakagawa,et al.  A Framework for Assessing Operational Madden–Julian Oscillation Forecasts: A CLIVAR MJO Working Group Project , 2010 .

[61]  Cecelia DeLuca,et al.  The architecture of the Earth System Modeling Framework , 2003, Computing in Science & Engineering.

[62]  M. Fahnestock,et al.  On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord , 2013 .

[63]  Max J. Suarez,et al.  The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales , 2001 .

[64]  S. Schubert,et al.  Atmospheric summer teleconnections and Greenland Ice Sheet surface mass variations: insights from MERRA-2 , 2016 .

[65]  J. Picaut,et al.  Monitoring the 1979-1985 equatorial Pacific current transports with expendable bathythermograph data , 1991 .

[66]  Kevin E. Trenberth,et al.  Atlantic meridional heat transports computed from balancing Earth's energy locally , 2017 .

[67]  R. Koster,et al.  The Quick Fire Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4. Volume 38; Technical Report Series on Global Modeling and Data Assimilation , 2015 .

[68]  M. Wheeler,et al.  An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction , 2004 .

[69]  David T. Bolvin,et al.  Improving the global precipitation record: GPCP Version 2.1 , 2009 .

[70]  S. Schubert,et al.  Tendency Bias Correction in Coupled and Uncoupled Global Climate Models with a Focus on Impacts over North America , 2019, Journal of Climate.

[71]  M. Chou,et al.  Parameterizations for the Absorption of Solar Radiation by O2 and CO2 with Application to Climate Studies , 1990 .

[72]  Colin J. Gleason,et al.  Direct measurements of meltwater runoff on the Greenland ice sheet surface , 2017, Proceedings of the National Academy of Sciences.

[73]  Jinlun Zhang,et al.  Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales , 2017, Climate Dynamics.

[74]  S. Riser,et al.  The Argo Program : observing the global ocean with profiling floats , 2009 .

[75]  E. Kalnay,et al.  A Hybrid Global Ocean Data Assimilation System at NCEP , 2014 .

[76]  Rolando R. Garcia,et al.  'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere , 1994 .

[77]  Mark P. Baldwin,et al.  Stratospheric Harbingers of Anomalous Weather Regimes , 2001, Science.

[78]  C. Flynn,et al.  The MERRA-2 Aerosol Reanalysis, 1980 - onward, Part I: System Description and Data Assimilation Evaluation. , 2017, Journal of climate.

[79]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[80]  M. Chou,et al.  A Solar Radiation Model for Use in Climate Studies , 1992 .

[81]  J. Thepaut,et al.  Toward a Consistent Reanalysis of the Climate System , 2014 .

[82]  Xavier Fettweis,et al.  Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data , 2012 .

[83]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[84]  T. Stockdale,et al.  Examining the Predictability of the Stratospheric Sudden Warming of January 2013 Using Multiple NWP Systems , 2016 .

[85]  J. Kondo,et al.  Air-sea bulk transfer coefficients in diabatic conditions , 1975 .

[86]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[87]  G. Vecchi,et al.  Skillful regional prediction of Arctic sea ice on seasonal timescales , 2017 .

[88]  A. Arakawa,et al.  Numerical methods used in atmospheric models , 1976 .

[89]  J. Wallace,et al.  Regional Climate Impacts of the Northern Hemisphere Annular Mode , 2001, Science.

[90]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[91]  Andrea Molod,et al.  Improvement of the GEOS‐5 AGCM upon updating the air‐sea roughness parameterization , 2011 .

[92]  D. Chelton,et al.  Geographical Variability of the First Baroclinic Rossby Radius of Deformation , 1998 .

[93]  E. Guilyardi,et al.  Enso Extremes and Diversity: Dynamics, Teleconnections, and Impacts , 2015 .

[94]  Amy H. Butler,et al.  Seasonal winter forecasts and the stratosphere , 2016 .

[95]  Amy H. Butler,et al.  Defining Sudden Stratospheric Warmings , 2015 .

[96]  Christian L. Keppenne,et al.  Error Covariance Modeling in the GMAO Ocean Ensemble Kalman Filter , 2008 .

[97]  J. S. Godfrey A sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations , 1989 .

[98]  E. Kalnay,et al.  The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model , 2013 .

[99]  Christopher N. K. Mooers,et al.  Observation and Simulation of Storm-Induced Mixed-Layer Deepening , 1978 .

[100]  M. Balmaseda,et al.  Predicting Sudden Stratospheric Warming 2018 and Its Climate Impacts With a Multimodel Ensemble , 2018, Geophysical Research Letters.

[101]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[102]  A. Barnston,et al.  The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction , 2014 .

[103]  Richard I. Cullather,et al.  Evaluation of the Surface Representation of the Greenland Ice Sheet in a General Circulation Model , 2014 .

[104]  Andrea Molod,et al.  The impact of limiting ocean roughness on GEOS‐5 AGCM tropical cyclone forecasts , 2013 .

[105]  David B. Stephenson,et al.  The history of scientific research on the North Atlantic Oscillation , 2013 .

[106]  Amy H. Butler,et al.  A sudden stratospheric warming compendium , 2016 .

[107]  A. da Silva,et al.  Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States , 2016 .

[108]  G. Danabasoglu,et al.  An Ensemble Adjustment Kalman Filter for the CCSM4 Ocean Component , 2013 .

[109]  John E. Walsh,et al.  The Atmospheric Response to Realistic Arctic Sea Ice Anomalies in an AGCM during Winter. , 2004 .

[110]  Ricardo Todling,et al.  The Stability of Incremental Analysis Update. , 2018, Monthly weather review.

[111]  Ross J. Murray,et al.  Explicit Generation of Orthogonal Grids for Ocean Models , 1996 .

[112]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[113]  Frank O. Bryan,et al.  Equatorial Circulation of a Global Ocean Climate Model with Anisotropic Horizontal Viscosity , 2001 .

[114]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[115]  M. Chin,et al.  Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth , 2010 .

[116]  Masaru Kunii,et al.  The role of ocean‐atmosphere interaction in Typhoon Sinlaku (2008) using a regional coupled data assimilation system , 2017 .

[117]  J. Carton Estimates of sea level in the tropical Atlantic Ocean using Geosat altimetry , 1989 .

[118]  Dim Coumou,et al.  More-Persistent Weak Stratospheric Polar Vortex States Linked to Cold Extremes , 2017 .

[119]  William H. Lipscomb,et al.  Biogeochemistry of CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual zbgc_colpkg modifications to Version 5 , 2016 .

[120]  X. Fettweis,et al.  Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers , 2012 .