The roles of magnesium in biotechnology.

This review highlights the important roles played by magnesium in the growth and metabolic functions of microbial and animal cells, and therefore assigns a key role for magnesium ions in biotechnology. The fundamental biochemical and physiological actions of magnesium as a regulatory cation are outlined. Such actions are deemed to be relevant in an applied sense, because Mg2+ availability in cell culture and fermentation media can dramatically influence growth and metabolism of cells. Manipulation of extracellular and intracellular magnesium ions can thus be envisaged as a relatively simplistic, but nevertheless versatile, means of physiological cell engineering. In addition, biological antagonism between calcium and magnesium at the molecular level may have profound consequences for the optimization of biotechnological processes that exploit cells. In fermentation, for example, it is argued that the efficiency of microbial conversion of substrate to product may be improved by altering Mg:Ca concentration ratios in industrial feedstocks in a way that makes more magnesium available to the cells. With particular respect to yeast-based biotechnologies, magnesium availability is seen as being crucially important in governing central pathways of carbohydrate catabolism, especially ethanolic fermentation. It is proposed that such influences of magnesium ions are expressed at the combined levels of key enzyme activation and cell membrane stabilization. The former ensures optimum flow of substrate to ethanol and the latter acts to protect yeasts from physical and chemical stress.

[1]  M. Terasaki,et al.  Evidence that intracellular magnesium is present in cells at a regulatory concentration for protein synthesis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. Walker Accumulation of magnesium ions during the cell cycle , 1986 .

[3]  T. Günther Functional compartmentation of intracellular magnesium. , 1986, Magnesium.

[4]  M. Schliwa The role of divalent cations in the regulation of microtubule assembly. In vivo studies on microtubules of the heliozoan axopodium using the ionophore A23187 , 1976, The Journal of cell biology.

[5]  J. Coburn,et al.  Magnesium, the mimic/antagonist to calcium. , 1984, The New England journal of medicine.

[6]  D. Kennell,et al.  Magnesium Starvation of Aerobacter aerogenes IV. Cytochemical Changes , 1967, Journal of bacteriology.

[7]  H. Rubin Central role for magnesium in coordinate control of metabolism and growth in animal cells. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[8]  L. Ingram,et al.  Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4 , 1985, Journal of bacteriology.

[9]  A. Lichtman,et al.  The requirements for ionized calcium and magnesium in lymphocyte proliferation , 1985, Journal of cellular physiology.

[10]  G. Walker,et al.  Magnesium as the fundamental regulator of the cell cycle , 1983 .

[11]  H. Sanui,et al.  THE ROLE OF MAGNESIUM IN CELL PROLIFERATION AND TRANSFORMATION , 1982 .

[12]  A. Flynn Control of in vitro lymphocyte proliferation by copper, magnesium and zinc deficiency. , 1984, The Journal of nutrition.

[13]  W. Simon,et al.  Cyclic Octa- and Decapeptides as Ionophores for Magnesium , 1985 .

[14]  Zakharenko Sv,et al.  Effect of bacterial cell substances on biological activities of bacteriophage , 1962 .

[15]  A. Lodi,et al.  Magnesium uptake by Sphaerotilus natans , 1992 .

[16]  B. Rosen,et al.  Maintenance of intracellular calcium in Escherichia coli. , 1987, The Journal of biological chemistry.

[17]  J. Ellory,et al.  The efflux of magnesium from single crustacean muscle fibres , 1972, The Journal of physiology.

[18]  G. Roomans Localization of divalent cations in phosphate-rich cytoplasmic granules in yeast , 1980 .

[19]  T. Tiffert,et al.  The concentration of ionized magnesium in barnacle muscle fibres. , 1977, The Journal of physiology.

[20]  D Garfinkel,et al.  Computer simulation of metabolism in pyruvate-perfused rat heart. V. Physiological implications. , 1979, The American journal of physiology.

[21]  I. Kulaev,et al.  Vacuoles: main compartments of potassium, magnesium, and phosphate ions in Saccharomyces carlsbergenis cells , 1980, Journal of bacteriology.

[22]  B. Altura,et al.  Magnesium ions and contraction of vascular smooth muscles: relationship to some vascular diseases. , 1981, Federation proceedings.

[23]  J. Geiderman,et al.  Magnesium--the forgotten electrolyte. , 1979, JACEP.

[24]  R. Veech,et al.  The concentrations of free and bound magnesium in rat tissues. Relative constancy of free Mg 2+ concentrations. , 1973, The Journal of biological chemistry.

[25]  A. Scarpa,et al.  Hormonal control of Mg2+ transport in the heart , 1990, Nature.

[26]  N. Bagni,et al.  Magnesium and polyamine levels in Neurospora crassa mycelia. , 1971, Biochimica et biophysica acta.

[27]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .

[28]  L. Ingram,et al.  Effects of alcohols on micro-organisms. , 1984, Advances in microbial physiology.

[29]  G. Rutter,et al.  Measurement of matrix free Mg2+ concentration in rat heart mitochondria by using entrapped fluorescent probes. , 1990, The Biochemical journal.

[30]  C. Grant,et al.  MINOR ELEMENT COMPOSITION OF YEAST EXTRACT , 1962, Journal of bacteriology.

[31]  M. Maguire,et al.  Hormone‐sensitive magnesium transport in murine S49 lymphoma cells: characterization and specificity for magnesium , 1983, The Journal of physiology.

[32]  J. Whitfield,et al.  Stimulation of mitotic activity and the initiation of deoxyribonucleic acid synthesis in populations of rat thymic lymphocytes by magnesium , 1969, Journal of cellular physiology.

[33]  A. Theuvenet,et al.  Kinetics of Ca2+ and Sr2+ uptake by yeast. Effects of pH, cations and phosphate. , 1979, Biochimica et biophysica acta.

[34]  R. Serrano Plasma membrane ATPase of plants and fungi , 1985 .

[35]  F. Zimmermann,et al.  Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae , 1993, Yeast.

[36]  D. Tempest,et al.  The Influence of Extracellular Products on the Behaviour of Mixed Microbial Populations in Magnesium-limited Chemostat Cultures , 1968 .

[37]  M. Webb The effect of magnesium on the growth and cell division of various bacterial species in complex media. , 1949, Journal of general microbiology.

[38]  Entian Kd,et al.  Regulation of sugar utilization by Saccharomyces cerevisiae. , 1992 .

[39]  R. Mateles,et al.  Continuous culture used for media optimization. , 1974, Applied microbiology.

[40]  M. N. Hughes,et al.  Metal speciation and microbial growth-the hard (and soft) facts , 1991 .

[41]  H. Rubin Effect of magnesium content on density-dependent regulation of the onset of DNA synthesis in transformed 3T3 cells. , 1982, Cancer research.

[42]  M. Maguire,et al.  Magnesium as a regulatory cation: criteria and evaluation. , 1987, Magnesium.

[43]  R. Martin Bioinorganic chemistry of magnesium , 1990 .

[44]  T. Hall,et al.  ELECTRON MICROPROBE X‐RAY ANALYSIS OF CALCIUM * , 1978 .

[45]  I. Cameron,et al.  Cellular concentration of magnesium and other ions in relation to protein synthesis, cell proliferation and cancer. , 1989, Magnesium.

[46]  U. Grenander,et al.  Developmental matching and the numerical matching hypothesis for neuronal cell death. , 1982, Journal of theoretical biology.

[47]  M. N. Hughes The Inorganic Chemistry of Biological Processes , 1972 .

[48]  T. J. Britz,et al.  Combined influence of magnesium concentration and polymerase chain reaction specificity enhancers. , 1992, FEMS microbiology letters.

[49]  R. Mitchell,et al.  Proliferation of Rous sarcoma virus-infected, but not of normal, chicken fibroblasts in a medium of reduced calcium and magnesium concentration. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. A. Tung,et al.  BIOCHEMICAL ASPECTS OF YEAST FLOCCULATION AND ITS MEASUREMENT: A REVIEW , 1992 .

[51]  M. Seelig Magnesium Deficiency in the Pathogenesis of Disease , 1980 .

[52]  Douglas Lloyd,et al.  Mitochondria of Microorganisms , 1976 .

[53]  J. Durlach Magnesium in clinical practice , 1988 .

[54]  J. Duffus,et al.  Control of cell division in yeast using the ionophore, A23187 with calcium and magnesium , 1974, Nature.

[55]  E. Carafoli [1] Membrane transport of calcium: An overview , 1988 .

[56]  P. Sadler,et al.  Inorganic elements in biology and medicine , 1979 .

[57]  Y. Eilam,et al.  Transient increase in Ca2+ influx in Saccharomyces cerevisiae in response to glucose: effects of intracellular acidification and cAMP levels. , 1990, Journal of general microbiology.

[58]  G. Gadd Interactions of fungip with toxic metals , 1993 .

[59]  D. Tempest,et al.  Continuous Cultivation of Microorganisms , 1984 .

[60]  G. Borst-Pauwels Ion transport in yeast. , 1981, Biochimica et biophysica acta.

[61]  M. Bushell,et al.  Polyamine, magnesium and ribonucleic acid levels in steady-state cultures of the mould Aspergillus nidulans. , 1974, Journal of general microbiology.

[62]  Berridge Mj Control of cell division: a unifying hypothesis. , 1975 .

[63]  D. Jennings,et al.  THE PARTICIPATION OF PHOSPHATE IN THE FORMATION OF A "CARRIER" FOR THE TRANSPORT OF MG++ AND MN++ IONS INTO YEAST CELLS , 1958, The Journal of general physiology.

[64]  A. Rubin,et al.  Membrane bound and cellular cationic changes associated with insulin stimulation of cultured cells , 1978, Journal of cellular physiology.

[65]  M. Ishidate Mikrochemischer Nachweis von o-Dioxo- und Oxomethylenverbindungen , 1938 .

[66]  M. Inouhe,et al.  Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+. , 1991, Microbios.

[67]  I. A. Rose The state of magnesium in cells as estimated from the adenylate kinase equilibrium. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. D. Snavely,et al.  Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene , 1986, Journal of bacteriology.

[69]  E. Conway,et al.  A cation carrier in the yeast cell wall. , 1958, The Biochemical journal.

[70]  B. Trump,et al.  The role of cytosolic Ca2+ in cell injury, necrosis and apoptosis. , 1992, Current opinion in cell biology.

[71]  G. Stewart,et al.  Selection and optimization of yeast suitable for ethanol production at 40°C , 1989 .

[72]  D. Jennings,et al.  THE ACTIVE TRANSPORT OF Mg++ AND Mn++ INTO THE YEAST CELL , 1958, The Journal of general physiology.

[73]  A. H. Rose Composition of the envelope layers of Saccharomyces cerevisiae in relation to flocculation and ethanol tolerance. , 1993, The Journal of applied bacteriology.

[74]  A. Busturia,et al.  Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems , 1982, Journal of bacteriology.

[75]  D. Tempest,et al.  Variation in content and distribution of magnesium, and its influence on survival, in Aerobacter aerogenes grown in a chemostat. , 1966, Journal of general microbiology.

[76]  R. London,et al.  Measurement of cytosolic free magnesium ion concentration by 19F NMR. , 1988, Biochemistry.

[77]  C. Vidair,et al.  Mg2+‐sensitive alterations in Ca2+ regulation associated with cell transformation , 1982, Journal of cellular physiology.

[78]  K. Nordström,et al.  YEAST GROWTH AND FORMATION OF FUSEL ALCOHOLS , 1965 .

[79]  R. Gupta,et al.  Noninvasive 31P NMR probes of free Mg2+, MgATP, and MgADP in intact Ehrlich ascites tumor cells. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[80]  M. Maguire Magnesium and Cell Proliferation a , 1988, Annals of the New York Academy of Sciences.

[81]  Å. Bovallius Morphological and chemical characteristics of a cytophaga sp grown under conditions of magnesium excess and magnesium limitation , 1979 .

[82]  W. Mckeehan,et al.  Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells , 1978, Nature.

[83]  C. Hadfield,et al.  The expression and performance of cloned genes in yeasts , 1993 .

[84]  G. Willsky Characterization of the plasma membrane Mg2+-ATPase from the yeast, Saccharomyces cerevisiae. , 1979, The Journal of biological chemistry.

[85]  R. Weimberg Polyphosphate levels in nongrowing cells of Saccharomyces mellis as determined by magnesium ion and the phenomenon of "Uberkompensation" , 1975, Journal of bacteriology.

[86]  S. Silver,et al.  Bacterial Magnesium, Manganese, and Zinc Transport , 1987 .

[87]  J. J. Wolken A Molecular Morphology of Euglena gracilis var. bacillaris , 1956 .

[88]  T. Günther Biochemistry and pathobiochemistry of magnesium. , 1981, Artery.

[89]  D. Appleman,et al.  The Effect of Magnesium Concentration on Growth of Chlorella. , 1953, Plant physiology.

[90]  R. Lotan,et al.  Effect of calcium ions on growth and metabolism of Saccharomyces carlsbergensis. , 1976, Journal of general microbiology.

[91]  H. Rubin Growth regulation, reverse transformation, and adaptability of 3T3 cells in decreased Mg2+ concentration. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[92]  B. Corkey,et al.  Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. , 1986, The Journal of biological chemistry.

[93]  Birgitte Kiær Ahring,et al.  Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors , 1993 .

[94]  David Lloyd,et al.  Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae , 1993, Yeast.

[95]  K. T. Holland,et al.  Effect of dilution rate and Mg2+ limitation on toxic shock syndrome toxin-1 production by Staphylococcus aureus grown in defined continuous culture. , 1988, Journal of general microbiology.

[96]  L. Ingram,et al.  Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation , 1986, Applied and environmental microbiology.

[97]  R. Jones Factors influencing deactivation of yeast cells exposed to ethanol. , 1987, The Journal of applied bacteriology.

[98]  E. P. Kennedy,et al.  Magnesium Transport in Escherichia coli , 1969 .

[99]  M. A. Connor,et al.  Reasons for the apparent difference in the effects of produced and added ethanol on culture viability during rapid fermentation by Saccharomyces cerevisiae , 1990, Biotechnology and bioengineering.

[100]  M. Webb The Influence of Magnesium on Cell Division. 1. The Growth of Clostridium welchii in Complex Media Deficient in Magnesium. , 1948 .

[101]  M. D. Snavely,et al.  Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci , 1989, Journal of bacteriology.

[102]  J. W. Dicks,et al.  Magnesium-limited growth of Bacillus subtilis, in pure and mixed cultures, in a chemostat. , 1967, Journal of general microbiology.

[103]  M. D. Snavely,et al.  Magnesium transport in Salmonella typhimurium. Regulation of mgtA and mgtB expression. , 1991, The Journal of biological chemistry.

[104]  S. Silver Active transport of magnesium in escherichia coli. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[105]  T. D. Brock EFFECTS OF MAGNESIUM ION DEFICIENCY ON ESCHERICHIA COLI AND POSSIBLE RELATION TO THE MODE OF ACTION OF NOVOBIOCIN , 1962, Journal of bacteriology.

[106]  B. Trump,et al.  Role of Ion Regulation in Cell Injury, Cell Death, and Carcinogenesis , 1989 .

[107]  M. Maguire,et al.  Magnesium: a regulated and regulatory cation , 1990 .

[108]  H. Shuman,et al.  Electron probe X-ray microanalysis of Ca2+, Mg2+, and other ions in rapidly frozen cells. , 1989, Methods in enzymology.

[109]  T. Hobley,et al.  Differences in response of Zymomonas mobilis and Saccharomyces cerevisiae to change in extracellular ethanol concentration , 1994, Biotechnology and bioengineering.

[110]  C. Hurwitz,et al.  The intracellular concentration of bound and unbound magnesium ions in Escherichia coli. , 1967, The Journal of biological chemistry.

[111]  G. Walker,et al.  Changes in calcium and magnesium levels during heat-shock synchronized cell division in Tetrahymena. , 1980, Experimental Cell Research.

[112]  B. Trump,et al.  The relationship between cell viability and changes in mitochondrial ultrastructure, cellular ATP, ion and water content following injury of Ehrlich ascites tumor cells , 1974, Virchows Archiv. B, Cell pathology.

[113]  A. Barbour Isolation and cultivation of Lyme disease spirochetes. , 1984, The Yale journal of biology and medicine.

[114]  A. Jerzmanowski,et al.  Mg3+ as a trigger of condensation-decondensation transition of chromatin during mitosis. , 1980, Journal of theoretical biology.

[115]  D. Garfinkel,et al.  Calculation of free-Mg2+ concentration in adenosine 5'-triphosphate containing solutions in vitro and in vivo. , 1984, Biochemistry.

[116]  D. Garfinkel,et al.  Magnesium regulation of the glycolytic pathway and the enzymes involved. , 1985, Magnesium.

[117]  H. Utkilen Magnesium-limited Growth of the Cyanobacterium Anacystis nidulans , 1982 .

[118]  B. Zacharias,et al.  Variations in the metal content of some commercial media and their effect on microbial growth. , 1971, Applied microbiology.

[119]  P. Schnetkamp Metabolism in the cytosol of intact isolated cattle rod outer segments as indicator for cytosolic calcium and magnesium ions. , 1981, Biochemistry.

[120]  M. Lewis,et al.  RELEASE OF PHOSPHATE BY FERMENTING BREWER'S YEAST , 1968 .

[121]  R. J. Williams,et al.  Magnesium-calcium balances and steady states of biological systems. , 1968, Journal of theoretical biology.

[122]  D. Phipps Metals and metabolism , 1976 .

[123]  D. Tempest,et al.  Fermentation Products: Physiological and Bioenergetic Considerations , 1986 .

[124]  M. D. Snavely,et al.  Magnesium transport in Salmonella typhimurium: expression of cloned genes for three distinct Mg2+ transport systems , 1989, Journal of bacteriology.

[125]  R. J. P. Williams,et al.  Tilden Lecture. The biochemistry of sodium, potassium, magnesium, and calcium , 1970 .

[126]  M. Lewis,et al.  ADENOSINE TRIPHOSPHATASE OF SACCHAROMYCES CARLSBERGENSIS , 1971 .

[127]  G. Gadd,et al.  Ionic nutrition of yeast—physiological mechanisms involved and implications for biotechnology , 1990 .

[128]  L. Okorokov MAIN MECHANISMS OF ION TRANSPORT AND REGULATION OF ION CONCENTRATION IN THE YEAST CYTOPLASM , 1985 .

[129]  R. Rude,et al.  Hypocalcemia of Mg Deficiency: Altered Modulation of Adenylate Cyclase by Mg++ and Ca++ May Result in Impaired PTH Secretion and PTH End-Organ Resistance , 1987 .

[130]  H. Sanui,et al.  Correlated effects of external magnesium on cation content and DNA synthesis in cultured chicken embryo fibroblasts , 1977, Journal of cellular physiology.

[131]  F. W. Heaton Role of magnesium in enzyme systems , 1990 .

[132]  A Fiechter,et al.  Growth control in microbial cultures. , 1985, Annual review of microbiology.

[133]  R. Miller,et al.  Nutrient requirements of suspension cultures of soybean root cells. , 1968, Experimental cell research.

[134]  S. Fleischer,et al.  Control of mitochondrial swelling by Mg2+—the relation of ion transport to structural changes , 1970, Journal of bioenergetics.

[135]  J. W. Dicks,et al.  The Interrelationship between Potassium, Magnesium and Phosphorus in Potassium-limited Chemostat Cultures of Aerobacter Aerogenes , 1966 .

[136]  V. Lew,et al.  Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells , 1977, Nature.

[137]  R. A. Reinhart Magnesium metabolism. A review with special reference to the relationship between intracellular content and serum levels. , 1988, Archives of internal medicine.

[138]  G. Walker,et al.  Magnesium in mitosis and the cell cycle , 1987 .

[139]  A. Campbell Intracellular calcium, its universal role as regulator , 1983 .

[140]  I. Sá-Correia,et al.  Influence of Calcium Ion on Ethanol Tolerance of Saccharomyces bayanus and Alcoholic Fermentation by Yeasts , 1988, Applied and environmental microbiology.

[141]  A. Goffeau,et al.  Energy-dependent uptake of calcium by the yeast Schizosaccharomyces pombe. , 1977, Biochimica et biophysica acta.

[142]  R. V. Tigerstrom The Effect of Magnesium and Manganese Ion Concentrations and Medium Composition on the Production of Extracellular Enzymes by Lysobacter enzymogenes , 1983 .

[143]  E. P. Kennedy,et al.  Magnesium and the growth of Escherichia coli. , 1968, The Journal of biological chemistry.

[144]  M. D. Snavely,et al.  Magnesium transport in eukaryotic and prokaryotic cells using magnesium-28 ion. , 1989, Methods in enzymology.

[145]  Y. Eilam,et al.  Cytoplasmic Ca2+Homeostasis Maintained by a Vacuolar Ca2+Transport System in the Yeast Saccharomyces cerevisiae , 1985 .

[146]  O. Käppeli,et al.  The respirative breakdown of glucose by Saccharomyces cerevisiae: an assessment of a physiological state. , 1985, Journal of general microbiology.

[147]  C. W. Tabor,et al.  1,4-Diaminobutane (putrescine), spermidine, and spermine. , 1976, Annual review of biochemistry.

[148]  Christian P. Kubicek,et al.  Citric Acid Fermentation , 1985 .

[149]  F. Singer,et al.  Magnesium deficiency and excess. , 1981, Annual review of medicine.

[150]  M. Maguire,et al.  Magnesium transport in murine S49 lymphoma cells: pharmacology and divalent cation selectivity. , 1985, The American journal of physiology.

[151]  W. Simon,et al.  Neutral ionophore-based selective electrode for assaying the activity of magnesium in undiluted blood serum. , 1990, Clinical chemistry.

[152]  E. Conway,et al.  Active transport of magnesium across the yeast cell membrane. , 1958, The Biochemical journal.

[153]  I. D. Algranati Inhibition of polypeptide synthesis initiation by a change of Mg++ concentration in wheat germ cell-free systems. , 1980, Biochemical and biophysical research communications.

[154]  Takashi Sasaki,et al.  Induction and Characterization of Artificial Diploids from the Haploid Yeast Torulaspora delbrueckii , 1987, Applied and environmental microbiology.

[155]  M. D. Snavely,et al.  Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. , 1993, The Journal of biological chemistry.

[156]  J. French,et al.  Magnesium: nature's physiologic calcium blocker. , 1984, American heart journal.

[157]  G. Walker Metal ions and the control of the cell cycle in fission and budding yeasts , 1978 .

[158]  H. Sanui,et al.  ATOMIC ABSORPTION MEASUREMENT OF CATIONS IN CULTURED CELLS1 , 1982 .

[159]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[160]  M. Webb Effects of magnesium deficiency on ribosomal structure and function in certain Gram-positive and Gram-negative bacteria. , 1970, Biochimica et biophysica acta.

[161]  M. Webb The influence of certain trace metals on bacterial growth and magnesium utilization. , 1968, Journal of general microbiology.

[162]  H. Rubin,et al.  Mutual potentiation by magnesium and calcium of growth in animal cells. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[163]  W. Simon,et al.  Intracellular magnesium ion selective microelectrode based on a neutral carrier. , 1989, Analytical chemistry.

[164]  J. Henquin,et al.  Glucose modulates Mg2+fluxes in pancreatic islet cells , 1983, Nature.

[165]  R. D. Batt,et al.  Survival of Streptococcus lactis in starvation conditions. , 1968, Journal of general microbiology.

[166]  H. Utkilen Manganese as Substitute for Magnesium During Magnesium-limited Growth of the Cyanobacterium Anacystis nidulans , 1983 .

[167]  J. C. Slaughter,et al.  THE METABOLISM OF PUTRESCINE, SPERMIDINE AND SPERMINE BY YEAST IN RELATION TO THE AVAILABILITY OF MAGNESIUM , 1983 .

[168]  D. Maughan,et al.  Diffusible sodium, potassium, magnesium, calcium and phosphorus in frog skeletal muscle. , 1985, The Journal of physiology.

[169]  J. Youatt Calcium and microorganisms. , 1993, Critical reviews in microbiology.

[170]  K D Garlid,et al.  On the mechanism of regulation of the mitochondrial K+/H+ exchanger. , 1980, The Journal of biological chemistry.

[171]  A. Prescott,et al.  Effects of elevated intracellular magnesium on cytoskeletal integrity. , 1988, Journal of cell science.

[172]  P. Greenfield,et al.  Ethanol and the fluidity of the yeast plasma membrane , 1987, Yeast.

[173]  C. Miller,et al.  Magnesium transport in Salmonella typhimurium: the influence of new mutations conferring Co2+ resistance on the CorA Mg2+ transport system , 1991, Molecular microbiology.

[174]  A. Durham,et al.  Calcium ions and the control of proliferation in normal and cancer cells , 1982, Bioscience reports.

[175]  M. D. Snavely,et al.  The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. , 1991, The Journal of biological chemistry.

[176]  C. Hurwitz,et al.  Evidence for a Magnesium Pump in Bacillus cereus T , 1971, Journal of bacteriology.

[177]  P. Dawson Growth, cell cultivation, cell metabolism, and the cell cycle of Candida utilis as explored by continuous phased culture , 1985 .

[178]  Aharon Oren,et al.  Halobacterium sodomense sp. nov., a Dead Sea Halobacterium with an Extremely High Magnesium Requirement , 1983 .

[179]  E. Weinberg Biosynthesis of Secondary Metabolites: Roles of Trace Metals , 1969 .

[180]  H. Sanui pH dependence of the effect of adenosine triphosphate and ethylenediaminetetraacetate on sodium and magnesium binding by cellular membrane fragments , 1970, Journal of Cellular Physiology.

[181]  K. Åkerman,et al.  Inhibition and stimulation of respiration-linked Mg2+ efflux in rat heart mitochondria , 1981, Journal of bioenergetics and biomembranes.

[182]  A. Demain Regulation of secondary metabolism in fungi , 1986 .

[183]  M. Stratford Yeast flocculation: Calcium specificity , 1989 .

[184]  R. Putnam,et al.  Mg2+ buffering in cultured chick ventricular myocytes: quantitation and modulation by Ca2+. , 1993, The American journal of physiology.

[185]  J. Barford,et al.  Precipitation, chelation, and the availability of metals as nutrients in anaerobic digestion. I. Methodology , 1983, Biotechnology and bioengineering.

[186]  G. Draetta,et al.  Phosphorylation in yeast cell processes. , 1993, Cellular signalling.

[187]  M. Stratford,et al.  Yeast flocculation: Cationic inhibition , 1990 .

[188]  D. Tempest,et al.  Magnesium-limited growth of Aerobacter aerogenes in a chemostat. , 1965, Journal of general microbiology.

[189]  M. H. Park,et al.  Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology , 1976, Journal of bacteriology.

[190]  H. Mohri,et al.  Fertilization of sea urchins needs magnesium ions in seawater. , 1976, Science.

[191]  T. Alatossava,et al.  Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187 , 1985, Journal of bacteriology.

[192]  A. Cittadini,et al.  Intracellular Mg2+ homeostasis of Ehrlich ascites tumor cells. , 1983, Archives of biochemistry and biophysics.

[193]  M. Maguire Hormone-sensitive magnesium transport and magnesium regulation of adenylate cyclase , 1984 .

[194]  W. Arnold,et al.  Effects of metal-depleted media on the growth and morphology of Saccharomyces rouxii and on the status of periplasmic acid phosphatase , 1983 .

[195]  A. Jerzmanowski,et al.  Model of mitosis based on antagonistic changes of intracellular concentration of free calcium and magnesium ions. , 1981, Journal of theoretical biology.

[196]  M. Webb The Influence of Magnesium on Cell Division , 1948 .

[197]  M. Maguire,et al.  Membrane topology of a P-type ATPase. The MgtB magnesium transport protein of Salmonella typhimurium. , 1993, The Journal of biological chemistry.

[198]  O. Käppeli Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. , 1986, Advances in microbial physiology.

[199]  G. Walker,et al.  Magnesium ions and the control of the cell cycle in yeast. , 1980, Journal of cell science.

[200]  J. Barford,et al.  Precipitation, chelation, and the availability of metals as nutrients in anaerobic digestion. II. Applications , 1983, Biotechnology and bioengineering.

[201]  S. Pirt,et al.  The quantitative glucose and mineral nutrient requirements of mouse LS (suspension) cells in chemically defined medium. , 1971, Journal of cell science.

[202]  G. Walker Magnesium and cell cycle control: an update. , 1986, Magnesium.

[203]  G. Stewart,et al.  Factors that influence the ethanol tolerance of brewer's yeast strains during high gravity wort fermentations , 1988 .

[204]  E. Dedyukhina,et al.  Essential metal ions in the control of microbial metabolism , 1991 .

[205]  S. Orrenius,et al.  Role of Ca2+ in toxic cell killing. , 1989, Trends in pharmacological sciences.

[206]  G. Gadd Metals and microorganisms: a problem of definition. , 1992, FEMS microbiology letters.

[207]  A. Scarpa Indicators of free magnesium in biological systems. , 1974, Biochemistry.

[208]  T. Egli,et al.  Theoretical Analysis of Media Used in the Growth of Yeasts on Methanol , 1981 .

[209]  D. Tempest,et al.  THE UTILITY OF CHEMOSTAT CULTURES IN STUDIES OF MICROBIAL PHYSIOLOGY , 1981 .

[210]  P. K. Agarwal,et al.  Effect of EDTA, potassium ferrocyanide, and sodium potassium tartarate on the production of ethanol from molasses by Saccharomyces cerevisiae , 1993 .

[211]  A. Sui,et al.  Intracellular free magnesium concentration in the sea urchin egg during fertilization , 1986 .

[212]  K. Bogucka,et al.  Intramitochondrial distribution of magnesium. , 1971, Biochemical and biophysical research communications.

[213]  D. Sanders,et al.  Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[214]  G. Stewart,et al.  Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation , 1988, Applied and environmental microbiology.

[215]  R. Bryant,et al.  Mg NMR in DNA solutions: Dominance of site binding effects. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[216]  T. Jacobsen,et al.  CHELATORS AND METAL BUFFERING IN FERMENTATION , 1977 .

[217]  Armin Fiechter,et al.  Mass culture of Escherichia coli: Medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media , 1985 .

[218]  S. J. Pirt,et al.  Principles of microbe and cell cultivation , 1975 .

[219]  A. Scarpa,et al.  Ionized magnesium concentration in axoplasm of dialyzed squid axons , 1975, FEBS letters.

[220]  W. Simon,et al.  Magnesium selective electrodes for blood serum studies and water hardness measurement , 1988 .

[221]  D. O’Day Calcium As an Intracellular Messenger in Eucaryotic Microbes , 1990 .

[222]  A. Peña,et al.  CHARACTERISTICS OF Ca2+ TRANSPORT IN YEAST , 1985 .

[223]  B. Mitchell,et al.  Calcium, magnesium, and growth control in the WI-38 human fibroblast cell , 1979, The Journal of cell biology.

[224]  I. Heath,et al.  Roles of calcium ions in hyphal tip growth. , 1993, Microbiological reviews.

[225]  W. M. Ingledew,et al.  High-Gravity Brewing: Effects of Nutrition on Yeast Composition, Fermentative Ability, and Alcohol Production , 1984, Applied and environmental microbiology.

[226]  J. C. Slaughter,et al.  THE EFFECT OF MAGNESIUM AND CALCIUM ON YEAST GROWTH , 1983 .

[227]  R. Tsien,et al.  Cytoplasmic pH and free Mg2+ in lymphocytes , 1982, The Journal of cell biology.

[228]  M. D. Snavely,et al.  Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems , 1989, Journal of bacteriology.

[229]  Y. Takeda,et al.  Reconfirmation of replacement of magnesium ion requirement by polyamines in isoleucyl‐tRNA formation in Escherichia coli , 1976, FEBS letters.

[230]  H. Shuman,et al.  Electron probe analysis, X-ray mapping, and electron energy-loss spectroscopy of calcium, magnesium, and monovalent ions in log-phase and in dividing Escherichia coli B cells , 1986, Journal of bacteriology.

[231]  L. Macaskie The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. , 1991, Critical reviews in biotechnology.

[232]  G. F. Fuhrmann,et al.  The transport of Zn2+, Co2+ and Ni2+ into yeast cells. , 1968, Biochimica et biophysica acta.

[233]  R. Oderinde,et al.  Comparative study of the effect of ferrocyanide and EDTA on the production of ethyl alcohol from molasses by Saccharomyces cerevisiae , 1986, Biotechnology and bioengineering.

[234]  S. Avery,et al.  Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae , 1992, Applied and environmental microbiology.

[235]  W. M. Ingledew,et al.  Ethanol tolerance in yeasts. , 1986, Critical reviews in microbiology.

[236]  R. London,et al.  A fluorescent indicator for measuring cytosolic free magnesium. , 1989, The American journal of physiology.

[237]  Y. Anraku,et al.  Cell cycle control by Ca2+ in Saccharomyces cerevisiae. , 1990, The Journal of biological chemistry.