Lattice-Valued Binary Decision Diagrams

This work introduces a new data structure, called Lattice-Valued Binary Decision Diagrams (or LVBDD for short), for the compact representation and manipulation of functions of the form θ : 2P → L, where P is a finite set of Boolean propositions and L is a finite distributive lattice. Such functions arise naturally in several verification problems. LVBDD are a natural generalisation of multi-terminal ROBDD which exploit the structure of the underlying lattice to achieve more compact representations. We introduce two canonical forms for LVBDD and present algorithms to symbolically compute their conjunction, disjunction and projection. We provide experimental evidence that this new data structure can outperform ROBDD for solving the finite-word LTL satisfiability problem.

[1]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[2]  Fausto Giunchiglia,et al.  NUSMV: A New Symbolic Model Verifier , 1999, CAV.

[3]  Jaco Geldenhuys,et al.  Larger Automata and Less Work for LTL Model Checking , 2006, SPIN.

[4]  R. Milner,et al.  Bigraphical Reactive Systems , 2001, CONCUR.

[5]  Orna Kupferman,et al.  Lattice Automata , 2007, VMCAI.

[6]  Sofia Cassel,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 2012 .

[7]  Masahiro Fujita,et al.  Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation , 1997, Formal Methods Syst. Des..

[8]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[9]  Stephan Merz,et al.  Model Checking , 2000 .

[10]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[11]  Marsha Chechik,et al.  Efficient Multiple-Valued Model-Checking Using Lattice Representations , 2001, CONCUR.

[12]  Henrik Reif Andersen,et al.  Boolean expression diagrams , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[13]  Moshe Y. Vardi,et al.  LTL Satisfiability Checking , 2007, SPIN.

[14]  Thomas A. Henzinger,et al.  Antichains: A New Algorithm for Checking Universality of Finite Automata , 2006, CAV.

[15]  Andreas Podelski,et al.  ACSAR: Software Model Checking with Transfinite Refinement , 2007, SPIN.

[16]  Shin-ichi Minato,et al.  Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems , 1993, 30th ACM/IEEE Design Automation Conference.

[17]  Jean-François Raskin,et al.  Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking , 2008, TACAS.

[18]  Patrick Cousot,et al.  Fixpoint-Guided Abstraction Refinements , 2007, SAS.

[19]  Giorgio Delzanno,et al.  Covering sharing trees: a compact data structure for parameterized verification , 2004, International Journal on Software Tools for Technology Transfer.

[20]  Marsha Chechik,et al.  Edge-Shifted Decision Diagrams for Multiple-Valued Logic , 2003, J. Multiple Valued Log. Soft Comput..

[21]  Jean-François Raskin,et al.  Antichain Algorithms for Finite Automata , 2010, TACAS.

[22]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..