Global wellposedness for the energy-critical Zakharov system below the ground state

[1]  K. Nakanishi,et al.  The Zakharov system in dimension $ d \geq 4$ , 2019, Journal of the European Mathematical Society (Print).

[2]  Kenji Nakanishi,et al.  The Zakharov system in 4D radial energy space below the ground state , 2018, American Journal of Mathematics.

[3]  S. Herr,et al.  On the Division Problem for the Wave Maps Equation , 2018, Annals of PDE.

[4]  Timothy Candy Multi-scale bilinear restriction estimates for general phases , 2017, Mathematische Annalen.

[5]  H. Mizutani Uniform Sobolev estimates for Schrödinger operators with scaling-critical potentials and applications , 2016, 1609.03253.

[6]  S. Herr,et al.  Transference of Bilinear Restriction Estimates to Quadratic Variation Norms and the Dirac-Klein-Gordon System , 2016, 1605.04882.

[7]  Kenji Nakanishi,et al.  Well-posedness and scattering for the Zakharov system in four dimensions , 2015, 1504.01073.

[8]  A. B. Datseff On the nonlinear schrödinger equation , 2009 .

[9]  Sanghyuk Lee,et al.  Sharp null form estimates for the wave equation , 2008 .

[10]  K. Nakanishi,et al.  Energy convergence for singular limits of Zakharov type systems , 2008 .

[11]  Herbert Koch,et al.  Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.

[12]  A. Biswas,et al.  The Nonlinear Schr√∂odinger's Equation , 2006 .

[13]  F. Merle,et al.  Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , 2006, math/0610266.

[14]  Benjamin Texier,et al.  Derivation of the Zakharov Equations , 2006, math/0603092.

[15]  M. Visan The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions , 2005, math/0508298.

[16]  T. Colin,et al.  Justification of the Zakharov Model from Klein–Gordon-Wave Systems , 2005 .

[17]  D. Tataru,et al.  Dispersive estimates for principally normal pseudodifferential operators , 2004, math/0401234.

[18]  T. Tao A sharp bilinear restriction estimate for paraboloids , 2002, math/0210084.

[19]  P. Gérard,et al.  High frequency approximation of solutions to critical nonlinear wave equations , 1999 .

[20]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[21]  T. Ozawa,et al.  The nonlinear Schrödinger limit and the initial layer of the Zakharov equations , 1992, Differential and Integral Equations.

[22]  Hélène Added,et al.  Equations of Langmuir turbulence and nonlinear Schrödinger equation: Smoothness and approximation , 1988 .

[23]  Michael I. Weinstein,et al.  The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence , 1986 .

[24]  B. Dodson Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension d=4 , 2019, Annales scientifiques de l'École normale supérieure.

[25]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[26]  Luis Vega,et al.  On the Zakharov and Zakharov-Schulman Systems , 1995 .

[27]  V. Zakharov Collapse of Langmuir Waves , 1972 .