Global wellposedness for the energy-critical Zakharov system below the ground state
暂无分享,去创建一个
[1] K. Nakanishi,et al. The Zakharov system in dimension $ d \geq 4$ , 2019, Journal of the European Mathematical Society (Print).
[2] Kenji Nakanishi,et al. The Zakharov system in 4D radial energy space below the ground state , 2018, American Journal of Mathematics.
[3] S. Herr,et al. On the Division Problem for the Wave Maps Equation , 2018, Annals of PDE.
[4] Timothy Candy. Multi-scale bilinear restriction estimates for general phases , 2017, Mathematische Annalen.
[5] H. Mizutani. Uniform Sobolev estimates for Schrödinger operators with scaling-critical potentials and applications , 2016, 1609.03253.
[6] S. Herr,et al. Transference of Bilinear Restriction Estimates to Quadratic Variation Norms and the Dirac-Klein-Gordon System , 2016, 1605.04882.
[7] Kenji Nakanishi,et al. Well-posedness and scattering for the Zakharov system in four dimensions , 2015, 1504.01073.
[8] A. B. Datseff. On the nonlinear schrödinger equation , 2009 .
[9] Sanghyuk Lee,et al. Sharp null form estimates for the wave equation , 2008 .
[10] K. Nakanishi,et al. Energy convergence for singular limits of Zakharov type systems , 2008 .
[11] Herbert Koch,et al. Well-posedness and scattering for the KP-II equation in a critical space , 2007, 0708.2011.
[12] A. Biswas,et al. The Nonlinear Schröodinger's Equation , 2006 .
[13] F. Merle,et al. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , 2006, math/0610266.
[14] Benjamin Texier,et al. Derivation of the Zakharov Equations , 2006, math/0603092.
[15] M. Visan. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions , 2005, math/0508298.
[16] T. Colin,et al. Justification of the Zakharov Model from Klein–Gordon-Wave Systems , 2005 .
[17] D. Tataru,et al. Dispersive estimates for principally normal pseudodifferential operators , 2004, math/0401234.
[18] T. Tao. A sharp bilinear restriction estimate for paraboloids , 2002, math/0210084.
[19] P. Gérard,et al. High frequency approximation of solutions to critical nonlinear wave equations , 1999 .
[20] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[21] T. Ozawa,et al. The nonlinear Schrödinger limit and the initial layer of the Zakharov equations , 1992, Differential and Integral Equations.
[22] Hélène Added,et al. Equations of Langmuir turbulence and nonlinear Schrödinger equation: Smoothness and approximation , 1988 .
[23] Michael I. Weinstein,et al. The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence , 1986 .
[24] B. Dodson. Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension d=4 , 2019, Annales scientifiques de l'École normale supérieure.
[25] C. Sulem,et al. The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .
[26] Luis Vega,et al. On the Zakharov and Zakharov-Schulman Systems , 1995 .
[27] V. Zakharov. Collapse of Langmuir Waves , 1972 .