Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000.

The complete genomic sequence of Pseudomonas syringae pv. syringae B728a (Pss B728a) has been determined and is compared with that of P. syringae pv. tomato DC3000 (Pst DC3000). The two pathovars of this economically important species of plant pathogenic bacteria differ in host range and other interactions with plants, with Pss having a more pronounced epiphytic stage of growth and higher abiotic stress tolerance and Pst DC3000 having a more pronounced apoplastic growth habitat. The Pss B728a genome (6.1 Mb) contains a circular chromosome and no plasmid, whereas the Pst DC3000 genome is 6.5 mbp in size, composed of a circular chromosome and two plasmids. Although a high degree of similarity exists between the two sequenced Pseudomonads, 976 protein-encoding genes are unique to Pss B728a when compared with Pst DC3000, including large genomic islands likely to contribute to virulence and host specificity. Over 375 repetitive extragenic palindromic sequences unique to Pss B728a when compared with Pst DC3000 are widely distributed throughout the chromosome except in 14 genomic islands, which generally had lower GC content than the genome as a whole. Content of the genomic islands varies, with one containing a prophage and another the plasmid pKLC102 of Pseudomonas aeruginosa PAO1. Among the 976 genes of Pss B728a with no counterpart in Pst DC3000 are those encoding for syringopeptin, syringomycin, indole acetic acid biosynthesis, arginine degradation, and production of ice nuclei. The genomic comparison suggests that several unique genes for Pss B728a such as ectoine synthase, DNA repair, and antibiotic production may contribute to the epiphytic fitness and stress tolerance of this organism.

[1]  G. Sundin,et al.  Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae , 1993, Applied and environmental microbiology.

[2]  G. Sundin,et al.  Sequence Diversity of rulA among Natural Isolates of Pseudomonas syringae and Effect on Function of rulAB-Mediated UV Radiation Tolerance , 2000, Applied and Environmental Microbiology.

[3]  T. Carroll,et al.  The Role of Pigmentation, Ultraviolet Radiation Tolerance, and Leaf Colonization Strategies in the Epiphytic Survival of Phyllosphere Bacteria , 2003, Microbial Ecology.

[4]  Y. Zhang,et al.  The phtE locus in the phaseolotoxin gene cluster has ORFs with homologies to genes encoding amino acid transferases, the AraC family of transcriptional factors, and fatty acid desaturases. , 1997, Molecular plant-microbe interactions : MPMI.

[5]  D. Expert,et al.  Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection , 2004, Molecular microbiology.

[6]  F. O'Gara,et al.  The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. , 2000, Microbiology.

[7]  S. S. Hirano,et al.  Bacteria in the Leaf Ecosystem with Emphasis onPseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte , 2000, Microbiology and Molecular Biology Reviews.

[8]  J. Ramos,et al.  Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. , 2002, Nucleic acids research.

[9]  D. Sands,et al.  Taxonomy of Phytopathogenic Pseudomonads , 1970, Journal of bacteriology.

[10]  J. Lamerdin,et al.  Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea , 2003, Journal of bacteriology.

[11]  S. Farrand,et al.  Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. , 1998, Molecular plant-microbe interactions : MPMI.

[12]  O. White,et al.  Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis , 2002, Nature Biotechnology.

[13]  T. Shinomiya,et al.  Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes , 1993, Journal of bacteriology.

[14]  G. Grandi,et al.  Characterization of the Syringomycin Synthetase Gene Cluster , 1998, The Journal of Biological Chemistry.

[15]  J. Klockgether,et al.  Sequence Analysis of the Mobile Genome Island pKLC102 of Pseudomonas aeruginosa C , 2004, Journal of bacteriology.

[16]  G. Beattie,et al.  Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Matthysse,et al.  Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola , 1990, Journal of bacteriology.

[18]  V. Braun,et al.  Regulation of the FecI-type ECF sigma factor by transmembrane signalling. , 2003, Current opinion in microbiology.

[19]  N. Saitou,et al.  Phylogenetic Analysis of Pseudomonas syringae Pathovars Suggests the Horizontal Gene Transfer of argK and the Evolutionary Stability of hrp Gene Cluster , 1999, Journal of Molecular Evolution.

[20]  B. G. Hansen,et al.  Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Y. Michel-Briand,et al.  The pyocins of Pseudomonas aeruginosa. , 2002, Biochimie.

[22]  A. Fraser,et al.  Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Cooksey,et al.  A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae , 1993, Journal of bacteriology.

[24]  Roshani Shakya,et al.  Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301 D-R. , 2004, Molecular plant-microbe interactions : MPMI.

[25]  D. Gross,et al.  The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. , 2001, Molecular plant-microbe interactions : MPMI.

[26]  A. Scaloni,et al.  A new syringopeptin produced by bean strains of Pseudomonas syringae pv. syringae. , 2002, Biochimica et biophysica acta.

[27]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Soule,et al.  Characterization of the argA Gene Required for Arginine Biosynthesis and Syringomycin Production by Pseudomonas syringae pv. syringae , 2003, Applied and Environmental Microbiology.

[29]  S. Lindow,et al.  Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. , 2004, Molecular plant-microbe interactions : MPMI.

[30]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[31]  S. Lindow,et al.  Bacterial colonization of leaves: a spectrum of strategies. , 1999, Phytopathology.

[32]  C. A. Shull Phytopathology , 1929, Botanical Gazette.

[33]  S. Swarup,et al.  Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. , 2002, Microbiology.

[34]  S. Jacquet,et al.  Auxin production is a common feature of most pathovars of Pseudomonas syringae. , 1998, Molecular plant-microbe interactions : MPMI.

[35]  Y. Zhang,et al.  Genetic organization of a cluster of genes involved in the production of phaseolotoxin, a toxin produced by Pseudomonas syringae pv. phaseolicola , 1993, Journal of bacteriology.

[36]  F. White,et al.  A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production , 1994, Journal of bacteriology.

[37]  M. Romantschuk,et al.  Localization of hrpA-induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves. , 2002, Molecular plant pathology.

[38]  Ivan Erill,et al.  In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon , 2003, Bioinform..

[39]  J. Botto,et al.  The plant cell , 2007, Plant Molecular Biology Reporter.

[40]  D. Expert,et al.  Achromobactin, a New Citrate Siderophore of Erwinia chrysanthemi , 2000, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[41]  J. Slovin,et al.  Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. , 2003, Trends in plant science.

[42]  S. Eykyn Microbiology , 1950, The Lancet.

[43]  D. Gross,et al.  Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases , 1999, Microbiology and Molecular Biology Reviews.

[44]  H. Heipieper,et al.  Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12 , 1996, Journal of bacteriology.

[45]  J. Soule,et al.  A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D. , 2001, Molecular plant-microbe interactions : MPMI.

[46]  Jean-Marie Meyer,et al.  Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species , 2000, Archives of Microbiology.

[47]  G. Martin,et al.  Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Green,et al.  Physical and functional repetition in a bacterial ice nucleation gene , 1985, Nature.

[49]  Rekha Seshadri,et al.  Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 , 2005, Nature Biotechnology.

[50]  B. Vinatzer,et al.  Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. , 2003, Current opinion in microbiology.

[51]  J. Ravel,et al.  Genomics of pyoverdine-mediated iron uptake in pseudomonads. , 2003, Trends in microbiology.

[52]  S. Lindow,et al.  Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces , 1987 .

[53]  P. Schweizer,et al.  Syringolin Reprograms Wheat to Undergo Hypersensitive Cell Death in a Compatible Interaction with Powdery Mildew , 2001, Plant Cell.