Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties.

New layered anisotropic infrared semiconductors, black arsenic-phosphorus (b-AsP), with highly tunable chemical compositions and electronic and optical properties are introduced. Transport and infrared absorption studies demonstrate the semiconducting nature of b-AsP with tunable bandgaps, ranging from 0.3 to 0.15 eV. These bandgaps fall into the long-wavelength infrared regime and cannot be readily reached by other layered materials.

[1]  T. Nilges,et al.  Mineralization routes to polyphosphides: Cu2P20 and Cu5InP16. , 2008, Angewandte Chemie.

[2]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[3]  Tom Nilges,et al.  Access and in situ growth of phosphorene-precursor black phosphorus , 2014 .

[4]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[5]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[6]  P. Schmidt,et al.  Synthesis and identification of metastable compounds: black arsenic--science or fiction? , 2012, Angewandte Chemie.

[7]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[8]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[9]  P. Schmidt,et al.  Au3SnP7@black phosphorus: an easy access to black phosphorus. , 2007, Inorganic chemistry.

[10]  T. Nilges,et al.  A fast low-pressure transport route to large black phosphorus single crystals , 2008 .

[11]  Yiming Zhu,et al.  Growth of Large‐Area 2D MoS2(1‐x)Se2x Semiconductor Alloys , 2014, Advanced materials.

[12]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[13]  X. Duan,et al.  Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. , 2014, Journal of the American Chemical Society.

[14]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.

[15]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[16]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[17]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[18]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[19]  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[20]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[21]  Kawamura,et al.  Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures. , 1994, Physical review. B, Condensed matter.

[22]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[23]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[24]  Chongwu Zhou,et al.  Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe₂ by sulfur-assisted chemical vapor deposition. , 2014, ACS nano.

[25]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[26]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[27]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[28]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[29]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[30]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[31]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[32]  Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene , 2014, 1411.3165.

[33]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.