Review of the most common chemometric techniques in illicit drug profiling.

The information generated through drug profiling can be used to infer a common source between one or several seizures as well as drug trafficking routes to provide insights into drug markets. Although well established, it is time-consuming and ineffective to compare all drug profiles manually. In recent years, there has been a push to automate processes to enable a more efficient comparison of illicit drug specimens. Various chemometric methods have been employed to compare and interpret forensic case data promptly. The intelligence that is produced can be used by decision-makers to disrupt or reduce the impact of illicit drug markets. This review highlights the most common chemometric techniques used in drug profiling and more specifically, the most efficient comparison metrics and pattern recognition techniques outlined in the literature.

[1]  Sueshige Seta,et al.  Analysis of inorganic impurities in seized methamphetamine samples , 1994 .

[2]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[3]  Zhendong Hua,et al.  Profiling of illicit cocaine seized in China by ICP-MS analysis of inorganic elements. , 2017, Forensic science international.

[4]  Age K. Smilde,et al.  UvA-DARE ( Digital Academic Repository ) Assessment of PLSDA cross validation , 2008 .

[5]  I. Lurie,et al.  Use of dynamically coated capillaries for the determination of heroin, basic impurities and adulterants with capillary electrophoresis. , 2004, Journal of chromatography. A.

[6]  Laurence Dujourdy,et al.  A quick and automated method for profiling heroin samples for tactical intelligence purposes. , 2007, Forensic science international.

[7]  Julian Broséus,et al.  Chemical profiling: A tool to decipher the structure and organisation of illicit drug markets: An 8-year study in Western Switzerland. , 2016, Forensic science international.

[8]  James Robertson,et al.  Illicit drug profiling: the Australian experience , 2007 .

[9]  Hiroyuki Inoue,et al.  Methamphetamine impurity profiling using a 0.32 mm i.d. nonpolar capillary column. , 2003, Forensic science international.

[10]  Verweij Am Impurities in Illicit Drug Preparations: Amphetamine and Methamphetamine. , 1989 .

[11]  Ettore Novellino,et al.  Use of NMR in profiling of cocaine seizures. , 2013, Forensic science international.

[12]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[13]  Guan Huat Tan,et al.  Chemometric procedures for analyzing trace organic impurities present in street doses of heroin via a constant weight approach , 2012 .

[14]  Randall D. Tobias,et al.  Chemometrics: A Practical Guide , 1998, Technometrics.

[15]  David Bright,et al.  Illuminating dark networks: a social network analysis of an Australian drug trafficking syndicate , 2012 .

[16]  Laura Aalberg,et al.  Drug intelligence based on MDMA tablets data: 2. Physical characteristics profiling. , 2008, Forensic science international.

[17]  Laurence Dujourdy,et al.  Development of a harmonised method for the profiling of amphetamines VI: Evaluation of methods for comparison of amphetamine. , 2007, Forensic science international.

[18]  Michael D Cole,et al.  Development of a harmonised method for the profiling of amphetamines: III. Development of the gas chromatographic method. , 2007, Forensic science international.

[19]  Grard Govaert Data Analysis , 2009 .

[20]  Pierre Esseiva,et al.  Different likelihood ratio approaches to evaluate the strength of evidence of MDMA tablet comparisons. , 2009, Forensic science international.

[21]  Charu C. Aggarwal,et al.  Data Clustering , 2013 .

[22]  Mikhail F. Kanevski,et al.  Pattern analysis in illicit heroin seizures: a novel application of machine learning algorithms , 2006, ESANN.

[23]  Palle Villesen,et al.  Variation in chemical profiles within large seizures of cocaine bricks. , 2017, Forensic science international.

[24]  Michael D Cole,et al.  Development of a harmonised method for the profiling of amphetamines: IV. Optimisation of sample preparation. , 2007, Forensic science international.

[25]  Takako Inoue,et al.  Impurity Profiling Analysis of Illicit Methamphetamine by Capillary Gas Chromatography , 1994 .

[26]  M D Cole,et al.  Development of a predictive model for batch membership of street samples of heroin. , 1999, Forensic science international.

[27]  F Besacier,et al.  Comparative chemical analyses of drug samples: general approach and application to heroin. , 1997, Forensic science international.

[28]  James R. Ehleringer,et al.  Tracing the geographical origin of cocaine , 2000, Nature.

[29]  Laura Aalberg,et al.  Development of a harmonised method for the profiling of amphetamines V: Determination of the variability of the optimised method. , 2007, Forensic science international.

[30]  Niamh Nicdaéid,et al.  Elemental profiling using ICPMS of methylamphetamine hydrochloride prepared from proprietary medication using the Moscow and hypophosphorous synthesis. , 2013, Science & justice : journal of the Forensic Science Society.

[31]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[32]  John F. Casale,et al.  A Chromatographic Impurity Signature Profile Analysis for Cocaine Using Capillary Gas Chromatography , 1991 .

[33]  C S Jonson,et al.  Computer aided retrieval of common-batch members in Leuckart amphetamine profiling. , 1993, Journal of forensic sciences.

[34]  P Hayoz,et al.  Establishment of an operational system for drug profiling: a Swiss experience. , 2005, Bulletin on narcotics.

[35]  M. J. Adams,et al.  Chemometrics in Analytical Spectroscopy , 1995 .

[36]  Claude Roux,et al.  The use of methylamphetamine chemical profiling in an intelligence-led perspective and the observation of inhomogeneity within seizures. , 2015, Forensic science international.

[37]  Yuchun Lee,et al.  Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function, and Backpropagation Neural Networks , 1991, Neural Computation.

[38]  Claude Roux,et al.  Physical evidence in drug intelligence Part 3: supercritical fluid extraction–high performance liquid chromatography of packaging tapes , 2009 .

[39]  Laurence Dujourdy,et al.  Headspace profiling of cocaine samples for intelligence purposes. , 2008, Forensic science international.

[40]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[41]  Merete Grung,et al.  Estimation of cocaine consumption in the community: a critical comparison of the results from three complimentary techniques , 2012, BMJ Open.

[42]  J F Casale,et al.  A computerized neural network method for pattern recognition of cocaine signatures. , 1993, Journal of forensic sciences.

[43]  Helmut Neumann Comparison of heroin by capillary gas chromatography in Germany , 1994 .

[44]  R. J. Wells,et al.  Preliminary investigation of heroin fingerprinting using trace element concentrations , 1998 .

[45]  Claude Roux,et al.  The use of organic and inorganic impurities found in MDMA police seizures in a drug intelligence perspective. , 2014, Science & justice : journal of the Forensic Science Society.

[46]  James Robertson,et al.  Chemical Profiling of Heroin Recovered from the North Korean Merchant Vessel Pong Su , 2006, Journal of forensic sciences.

[47]  David R Morello,et al.  Qualitative and Quantitative Determination of Residual Solvents in Illicit Cocaine HCl and Heroin HCl , 1995 .

[48]  C. Kingston,et al.  Neural networks in forensic science. , 1992, Journal of forensic sciences.

[49]  Julian Broséus,et al.  Buying drugs on a Darknet market: A better deal? Studying the online illicit drug market through the analysis of digital, physical and chemical data. , 2016, Forensic science international.

[50]  Michael Collins,et al.  Illicit drug profiling: the Australian experience – revisited , 2017 .

[51]  Pierre Esseiva,et al.  Illicit drug profiling, reflection on statistical comparisons. , 2011, Forensic science international.

[52]  K. Pearson Contributions to the Mathematical Theory of Evolution , 1894 .

[53]  Maria Monfreda,et al.  Fast profiling of cocaine seizures by FTIR spectroscopy and GC-MS analysis of minor alkaloids and residual solvents. , 2015, Science & justice : journal of the Forensic Science Society.

[54]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[55]  Palle Villesen,et al.  Cocaine classification using alkaloid and residual solvent profiling. , 2016, Forensic science international.

[56]  Agnieszka Martyna,et al.  Statistical Analysis in Forensic Science: Evidential Value of Multivariate Physicochemical Data , 2014 .

[57]  S Lociciro,et al.  Cocaine profiling for strategic intelligence, a cross-border project between France and Switzerland: part II. Validation of the statistical methodology for the profiling of cocaine. , 2008, Forensic Science International.

[58]  H Huizer,et al.  Residual solvents in methylenedioxymethamphetamine tablets as a source of strategic information and as a tool for comparative analysis: the development and application of a static headspace gas chromatography/mass spectrometry method. , 2005, Bulletin on narcotics.

[59]  Olivier Delémont,et al.  Data triangulation in the context of opioids monitoring via wastewater analyses. , 2015, Drug and alcohol dependence.

[60]  Siddharth Chandra,et al.  Transnational cocaine and heroin flow networks in western Europe: A comparison. , 2015, The International journal on drug policy.

[61]  Aurélien Géron,et al.  Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems , 2017 .

[62]  Kar-Weng Chan,et al.  Investigation of illicit heroin seized in Malaysia: physical characteristics and chemical profiling , 2012 .

[63]  Adriano O Maldaner,et al.  Correlation of cocaine hydrochloride samples seized in Brazil based on determination of residual solvents: an innovative chemometric method for determination of linkage thresholds. , 2013, Analytical chemistry.

[64]  Roberta Risoluti,et al.  Cocaine profiling: Implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry. , 2017, Talanta.

[65]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[66]  L Dujourdy,et al.  Drug intelligence based on organic impurities in illicit MA samples. , 2008, Forensic science international.

[67]  Knut E. Rasmussen,et al.  Micellar electrokinetic chromatography of charged and neutral drugs in acidic running buffers containing a zwitterionic surfactant, sulfonic acids or sodium dodecyl sulphate separation of heroin, basic by-products and adulterants , 1997 .

[68]  L Strömberg,et al.  Heroin impurity profiling. A harmonization study for retrospective comparisons. , 2000, Forensic science international.

[69]  Laura Aalberg,et al.  Development of a harmonized method for the profiling of amphetamines. I. Synthesis of standards and compilation of analytical data. , 2005, Forensic science international.

[70]  H. Kaiser The Application of Electronic Computers to Factor Analysis , 1960 .

[71]  Andrzej Parczewski,et al.  Application of chemometric methods in searching for illicit Leuckart amphetamine sources , 2001 .

[72]  Pierre Margot,et al.  Forensic Intelligence and Crime Analysis , 2003 .

[73]  Claude Roux,et al.  Physical evidence in drug intelligence, Part 1: rationale based on hierarchic distribution of drugs using pyrolysis gas chromatography –mass spectrometry as an example , 2007 .

[74]  Donald F. Specht,et al.  Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification , 1990, IEEE Trans. Neural Networks.

[75]  P Maynard,et al.  Adhesive tape analysis: establishing the evidential value of specific techniques. , 2001, Journal of forensic sciences.

[76]  Guan Huat Tan,et al.  Harmonizing a chemometric procedure for the classification of illicit heroin using manufacturing impurities: preliminary investigation of heroin simulated links , 2013 .

[77]  Tony Raymond,et al.  Forensic intelligence in policing: organisational and cultural change , 2015 .

[78]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[79]  William J. Kerr,et al.  Characterization of Route Specific Impurities Found in Methamphetamine Synthesized by the Leuckart and Reductive Amination Methods , 2009, Analytical chemistry.

[80]  Julian Broséus,et al.  First systematic chemical profiling of cocaine police seizures in Finland in the framework of an intelligence-led approach. , 2015, Forensic science international.

[81]  Kathrine E. Janzen,et al.  A database for comparison analysis of illicit cocaine samples , 1994 .

[82]  M D Cole Occluded Solvent Analysis as a Basis for Heroin and Cocaine Sample Differentiation. , 1998, Forensic science review.

[83]  G. N. Lance,et al.  Computer Programs for Hierarchical Polythetic Classification ("Similarity Analyses") , 1966, Comput. J..

[84]  Laura Aalberg,et al.  Development of a harmonized method for the profiling of amphetamines. II. Stability of impurities in organic solvents. , 2005, Forensic science international.

[85]  Claudio L. Donnici,et al.  Analysis of seized cocaine samples by using chemometric methods and FTIR spectroscopy , 2013 .

[86]  Philip Doble,et al.  Chemical profiling and classification of illicit heroin by principal component analysis, calculation of inter sample correlation and artificial neural networks. , 2005, Talanta.

[87]  David Littlejohn,et al.  Classification of ecstasy tablets using trace metal analysis with the application of chemometric procedures and artificial neural network algorithms. , 2004, The Analyst.

[88]  Claude Roux,et al.  The use of forensic case data in intelligence-led policing: the example of drug profiling. , 2013, Forensic science international.

[89]  Laura Aalberg,et al.  Drug intelligence based on MDMA tablets data I. Organic impurities profiling. , 2008, Forensic science international.

[90]  Fabrice Besacier,et al.  A contribution to the chemical profiling of 3,4-methylenedioxymethamphetamine (MDMA) tablets. , 2002, Forensic science international.

[91]  S. Klemenc,et al.  In common batch searching of illicit heroin samples--evaluation of data by chemometrics methods. , 2001, Forensic science international.

[92]  S Lociciro,et al.  Cocaine profiling for strategic intelligence purposes, a cross-border project between France and Switzerland. Part I. Optimisation and harmonisation of the profiling method. , 2007, Forensic science international.

[93]  Hiroyuki Inoue,et al.  Comparison and classification of methamphetamine seized in Japan and Thailand using gas chromatography with liquid-liquid extraction and solid-phase microextraction. , 2008, Forensic science international.

[94]  James R. Pearson,et al.  Impurity profiling of methylamphetamine in Australia and the development of a national drugs database , 1994 .

[95]  Max M. Houck Professional Issues in forensic science. , 2015 .

[96]  Miguel de la Guardia,et al.  A green method for the determination of cocaine in illicit samples. , 2014, Forensic science international.

[97]  János Podani,et al.  Introduction to the exploration of multivariate biological data , 2000 .

[98]  Leslie A. King,et al.  Heroin profiling: Predicting the country of origin of seized heroin , 1998 .

[99]  Ahmad Fahmi Lim Abdullah,et al.  Trace elemental profile investigation of illicit heroin for forensic intelligence , 2020 .

[100]  Manfred. Gloger,et al.  Analyse von heroinproben mit der Kapillargaschromatographie. Vergleich von Glaskapillartrennsäule und gepackter Säule , 1983 .

[101]  James R. Ehleringer,et al.  Geo-location of heroin and cocaine by stable isotope ratios , 1999 .

[102]  D. A. Cooper,et al.  Illicit heroin manufacturing byproducts: capillary gas chromatographic determination and structural elucidation of narcotine- and norlaudanosine-related compounds. , 1984, Analytical chemistry.

[103]  C Barnfield,et al.  The routine profiling of forensic heroin samples. , 1988, Forensic science international.

[104]  G. N. Lance,et al.  Mixed-Data Classificatory Programs I - Agglomerative Systems , 1967, Aust. Comput. J..

[105]  Philip Doble,et al.  Optimisation of HPLC gradient separations using artificial neural networks (ANNs): application to benzodiazepines in post-mortem samples. , 2009, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[106]  Mario Cantú-Sifuentes,et al.  Multivariate statistical inference in a radial basis function neural network , 2018, Expert Syst. Appl..

[107]  Zhiguo Wang,et al.  k-Nearest Neighbor Augmented Neural Networks for Text Classification , 2017, ArXiv.

[108]  Zhendong Hua,et al.  Profiling and classification of illicit heroin by ICP-MS analysis of inorganic elements. , 2014, Forensic science international.

[109]  K. Sjoedin Minimizing effects of closure on analytical data , 1984 .

[110]  Tao Li,et al.  Using discriminant analysis for multi-class classification: an experimental investigation , 2006, Knowledge and Information Systems.

[111]  Benjamin Debrus,et al.  Study of common database feeding with results coming from different analytical methods in the framework of illicit drugs chemical profiling. , 2013, Forensic science international.

[112]  Pierre Margot,et al.  Optimization of HS-SPME/GC-MS analysis and its use in the profiling of illicit ecstasy tablets (Part 1). , 2009, Forensic science international.

[113]  M. Zweig,et al.  Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. , 1993, Clinical chemistry.

[114]  Rodinei Augusti,et al.  Evaluation of the composition of street cocaine seized in two regions of Brazil. , 2013, Science & justice : journal of the Forensic Science Society.

[115]  Rao S. Govindaraju,et al.  Radial-Basis Function Networks , 2000 .

[116]  T. C. Kram,et al.  The Identification of Impurities in Illicit Methamphetamine Exhibits by Gas Chromatography/Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy , 1977 .

[117]  Hiroyuki Inoue,et al.  Identification of impurities and the statistical classification of methamphetamine using headspace solid phase microextraction and gas chromatography-mass spectrometry. , 2006, Forensic science international.

[118]  J R Beck,et al.  The use of relative operating characteristic (ROC) curves in test performance evaluation. , 1986, Archives of pathology & laboratory medicine.

[119]  Antoine Zambelli,et al.  A data-driven approach to estimating the number of clusters in hierarchical clustering , 2016, F1000Research.

[120]  Alison Beavis,et al.  A review of impurity profiling and synthetic route of manufacture of methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, dimethylamphetamine and p-methoxyamphetamine. , 2013, Forensic science international.

[121]  H. Neumann,et al.  Profiling of illicit heroin samples by high-resolution capillary gas chromatography for forensic application , 1982 .

[122]  M Morelato Forensic drug profiling : a tool for intelligence-led policing , 2015 .

[123]  Marcelo Caetano Alexandre Marcelo,et al.  Profiling cocaine by ATR-FTIR. , 2015, Forensic science international.

[124]  Alex Biedermann,et al.  Forensic drug intelligence: an important tool in law enforcement. , 2007, Forensic science international.

[125]  S. Skopec,et al.  Investigation of heroin profiling using trace organic impurities. , 2001, The Analyst.

[126]  Ruth J H Waddell-Smith,et al.  A Review of Recent Advances in Impurity Profiling of Illicit MDMA Samples , 2007, Journal of forensic sciences.

[127]  K E Janzen,et al.  Comparison analysis of illicit cocaine samples. , 1992, Journal of forensic sciences.

[128]  K. E. Janzen Cross-Matching of Cocaine Samples. A Case Study , 1987 .

[129]  M M van Deursen,et al.  Organic impurity profiling of 3,4-methylenedioxymethamphetamine (MDMA) tablets seized in The Netherlands. , 2006, Science & justice : journal of the Forensic Science Society.

[130]  Philip Doble,et al.  Physical evidence in drug intelligence, Part 2: discrimination of packaging tapes by colour , 2008 .

[131]  Marcio Talhavini,et al.  Discrimination and quantification of cocaine and adulterants in seized drug samples by infrared spectroscopy and PLSR. , 2015, Forensic science international.

[132]  Niamh Nic Daéid,et al.  The analytical and chemometric procedures used to profile illicit drug seizures. , 2005, Talanta.

[133]  F Taroni,et al.  A methodology for illicit heroin seizures comparison in a drug intelligence perspective using large databases. , 2003, Forensic science international.

[134]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[135]  Pierre Esseiva,et al.  The profiling of MDMA tablets: a study of the combination of physical characteristics and organic impurities as sources of information. , 2009, Forensic science international.

[136]  L. Strömberg,et al.  Two-level classification of Leuckart amphetamine , 1994 .

[137]  Chris H. Q. Ding,et al.  K-means clustering via principal component analysis , 2004, ICML.

[138]  Pierre Margot,et al.  Headspace solid-phase microextraction (HS-SPME) and liquid-liquid extraction (LLE): comparison of the performance in classification of ecstasy tablets. Part 2. , 2008, Forensic science international.

[139]  Christian W. Dawson,et al.  Hydrological modelling using artificial neural networks , 2001 .