A co-rotational formulation for thin-walled beams with monosymmetric open section
暂无分享,去创建一个
Kuo Mo Hsiao | Wen Yi Lin | K. Hsiao | W. Lin
[1] D. W. Scharpf,et al. On the geometrical stiffness of a beam in space—a consistent V.W. approach , 1979 .
[2] M. Crisfield. A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .
[3] Kuo Mo Hsiao,et al. A co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams , 2000 .
[4] Walter P. Murphy,et al. Structural stability , 1999 .
[5] K. Hsiao. Corotational total Lagrangian formulation for three-dimensional beamelement , 1992 .
[6] H. Ziegler. Principles of structural stability , 1968 .
[7] A. Spencer. Continuum Mechanics , 1967, Nature.
[8] K. Gerstle. Advanced Mechanics of Materials , 2001 .
[9] V. Vlasov. Thin-walled elastic beams , 1961 .
[10] J. Hutchinson,et al. Buckling of Bars, Plates and Shells , 1975 .
[11] Gordan Jelenić,et al. A kinematically exact space finite strain beam model - finite element formulation by generalized virtual work principle , 1995 .
[12] Tetsuya Matsui,et al. A new finite element scheme for instability analysis of thin shells , 1976 .
[13] Kuo Mo Hsiao,et al. A Motion Process for Large Displacement Analysis of Spatial Frames , 1991 .
[14] S. Timoshenko. Theory of Elastic Stability , 1936 .
[15] J. W. Humberston. Classical mechanics , 1980, Nature.
[16] F. Gruttmann,et al. A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections , 1998 .
[17] Nicholas S. Trahair,et al. PREBUCKLING DEFLECTIONS AND LATERAL BUCKLING. II: APPLICATIONS , 1992 .
[18] Kuo Mo Hsiao,et al. A consistent finite element formulation for linear buckling analysis of spatial beams , 1998 .
[19] Nicholas S. Trahair,et al. Stability of Monosymmetric Beams and Cantilevers , 1972 .
[20] Bassam A. Izzuddin,et al. AN EULERIAN APPROACH TO THE LARGE DISPLACEMENT ANALYSIS OF THIN-WALLED FRAMES. , 1995 .
[21] Eric M. Lui,et al. Structural Stability: Theory and Implementation , 1987 .
[22] H. Saunders,et al. Finite element procedures in engineering analysis , 1982 .
[23] D. Dawe,et al. Matrix and finite element displacement analysis of structures , 1984 .
[24] Bassam A. Izzuddin,et al. Large Displacement Analysis of Elasto-Plastic Thin-Walled Frames Part II: Verification and Application , 1996 .
[25] M. J. Clarke,et al. Symmetry of Tangent Stiffness Matrices of 3D Elastic Frame , 2000 .
[26] Bassam A. Izzuddin,et al. Large Displacement Analysis of Elasto-Plastic Thin-Walled Frames Part I: Formulation and Implementation , 1996 .
[27] George E. Blandford,et al. Thin-Walled Space Frames. II: Algorithmic Details and Applications , 1991 .
[28] Nicholas S. Trahair,et al. Prebuckling Deflections and Lateral Buckling. I: Theory , 1992 .
[29] Nicholas S. Trahair,et al. POST-BUCKLING BEHAVIOR OF DETERMINATE BEAMS , 1974 .
[30] M. J. Clarke,et al. Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements , 1998 .
[31] M. Géradin,et al. A beam finite element non‐linear theory with finite rotations , 1988 .
[32] Stephen P. Timoshenko,et al. Strength of Materials. , 1931, Nature.
[33] Mario M. Attard,et al. Lateral buckling analysis of beams by the FEM , 1986 .
[34] D. W. Scharpf,et al. On large displacement-small strain analysis of structures with rotational degrees of freedom , 1978 .
[35] J. C. Simo,et al. The role of non-linear theories in transient dynamic analysis of flexible structures , 1987 .
[36] J. C. Simo,et al. A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .
[37] A. Saleeb,et al. Generalized mixed finite element model for pre- and post-quasistatic buckling response of thin-walled framed structures , 1994 .
[38] Ekkehard Ramm,et al. Displacement dependent pressure loads in nonlinear finite element analyses , 1984 .
[39] George E. Blandford,et al. Closure of "Thin-Walled Space Frames. I: Large-Deformation Analysis Theory" , 1991 .
[40] Richard H. Gallagher,et al. Finite element analysis of torsional and torsional–flexural stability problems , 1970 .
[41] D. W. Scharpf,et al. Finite element method — the natural approach , 1979 .
[42] M. Crisfield. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .
[43] S. Atluri,et al. On a consistent theory, and variational formulation of finitely stretched and rotated 3-D space-curved beams , 1988 .