暂无分享,去创建一个
[1] Robert E. Tarjan,et al. A Combinatorial Problem Which Is Complete in Polynomial Space , 1976, JACM.
[2] Ker-I Ko. Relativized polynomial time hierarchies having exactly K levels , 1988, STOC '88.
[3] Adam Glos,et al. The role of quantum correlations in Cop and Robber game , 2017, ArXiv.
[4] J. Conway. On Numbers and Games , 1976 .
[5] Thomas J. Schaefer,et al. On the Complexity of Some Two-Person Perfect-Information Games , 1978, J. Comput. Syst. Sci..
[6] D. Gale. The Game of Hex and the Brouwer Fixed-Point Theorem , 1979 .
[7] K. Arrow,et al. EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .
[8] Paul W. Goldberg,et al. The complexity of computing a Nash equilibrium , 2006, STOC '06.
[9] E. Berlekamp,et al. Winning Ways for Your Mathematical Plays , 1983 .
[10] Diogo M. Costa. Computational Complexity of Games and Puzzles , 2018, ArXiv.
[11] Edward R. Scheinerman,et al. Undirected Edge Geography , 1993, Theor. Comput. Sci..
[12] C. L. Bouton. Nim, A Game with a Complete Mathematical Theory , 1901 .
[13] L. Brouwer. Über Abbildung von Mannigfaltigkeiten , 1911 .
[14] Salil P. Vadhan,et al. Computational Complexity , 2005, Encyclopedia of Cryptography and Security.
[15] SELIM G. AKL,et al. On the Importance of Being Quantum , 2010, Parallel Process. Lett..
[16] Aviezri S. Fraenkel,et al. Computing a Perfect Strategy for n x n Chess Requires Time Exponential in n , 1981, J. Comb. Theory, Ser. A.
[17] J. Nash. Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[18] Jan. 9–Jan,et al. Combinatorial Game Theory , 2022 .
[19] J. Eisert,et al. Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.
[20] Xiaotie Deng,et al. Settling the complexity of computing two-player Nash equilibria , 2007, JACM.
[21] J. Graver,et al. Graduate studies in mathematics , 1993 .
[22] Stefan Reisch,et al. Hex ist PSPACE-vollständig , 1981, Acta Informatica.
[23] David Lichtenstein,et al. GO Is Polynomial-Space Hard , 1980, JACM.
[24] Thomas J. Schaefer,et al. The complexity of satisfiability problems , 1978, STOC.
[25] Mehdi Mhalla,et al. Toward Quantum Combinatorial Games , 2017 .
[26] Christos H. Papadimitriou,et al. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..
[27] Shang-Hua Teng,et al. Atropos: A PSPACE-Complete Sperner Triangle Game , 2008, Internet Math..
[28] Valia Mitsou,et al. The Computational Complexity of Games and Puzzles , 2013 .
[29] Allan Goff,et al. Quantum tic-tac-toe: A teaching metaphor for superposition in quantum mechanics , 2006 .
[30] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .
[31] Richard E. Ladner,et al. On the Structure of Polynomial Time Reducibility , 1975, JACM.
[32] R. Sprague. Über mathematische Kampfspiele , 1935 .