Building Multi-Modal Relational Graphs for Multimedia Retrieval

The abundance of Web 2.0 social media in various media formats calls for integration that takes into account tags associated with these resources. The authors present a new approach to multi-modal media search, based on novel related-tag graphs, in which a query is a resource in one modality, such as an image, and the results are semantically similar resources in various modalities, for instance text and video. Thus the use of resource tagging enables the use of multi-modal results and multi-modal queries, a marked departure from the traditional text-based search paradigm. Tag relation graphs are built based on multi-partite networks of existing Web 2.0 social media such as Flickr and Wikipedia. These multi-partite linkage networks contributor-tag, tag-category, and tag-tag are extracted from Wikipedia to construct relational tag graphs. In fusing these networks, the authors propose incorporating contributor-category networks to model contributor's specialization; it is shown that this step significantly enhances the accuracy of the inferred relatedness of the term-semantic graphs. Experiments based on 200 TREC-5 ad-hoc topics show that the algorithms outperform existing approaches. In addition, user studies demonstrate the superiority of this visualization system and its usefulness in the real world.

[1]  Gordon I. McCalla,et al.  User Modelling in I-Help: What, Why, When and How , 2001, User Modeling.

[2]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[3]  Evgeniy Gabrilovich,et al.  Overcoming the Brittleness Bottleneck using Wikipedia: Enhancing Text Categorization with Encyclopedic Knowledge , 2006, AAAI.

[4]  Doug Beeferman,et al.  Agglomerative clustering of a search engine query log , 2000, KDD '00.

[5]  Evgeniy Gabrilovich,et al.  Feature Generation for Text Categorization Using World Knowledge , 2005, IJCAI.

[6]  Trevor Darrell,et al.  Photo-based question answering , 2008, ACM Multimedia.

[7]  Eduardo Mena,et al.  Web-Based Measure of Semantic Relatedness , 2008, WISE.

[8]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[9]  Michael R. Lyu,et al.  Learning latent semantic relations from clickthrough data for query suggestion , 2008, CIKM '08.

[10]  Konrad Tollmar,et al.  Searching the Web with mobile images for location recognition , 2004, CVPR 2004.

[11]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[12]  Steffen Staab,et al.  Human Language Technologies for Knowledge Management , 2001, IEEE Intell. Syst..

[13]  Ricardo A. Baeza-Yates,et al.  Extracting semantic relations from query logs , 2007, KDD '07.

[14]  Yi Zhang,et al.  Novelty and redundancy detection in adaptive filtering , 2002, SIGIR '02.

[15]  Chin-Chen Chang,et al.  A simple prediction method for progressive image transmission , 2002 .

[16]  M Girvan,et al.  Structure of growing social networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[18]  Monika Henzinger,et al.  Hyperlink Analysis for the Web , 2001, IEEE Internet Comput..

[19]  Yi Chen,et al.  Synthetic Video Generation for Evaluation of Sprite Generation , 2010, Int. J. Multim. Data Eng. Manag..

[20]  Xin Luo,et al.  Encyclopedia of Multimedia Technology and Networking , 2008 .

[21]  Ying Wang,et al.  A study of the effect of term proximity on query expansion , 2006, J. Inf. Sci..

[22]  Pavel Serdyukov,et al.  Enterprise and desktop search , 2010, WWW '10.

[23]  Péter Schönhofen,et al.  Identifying Document Topics Using the Wikipedia Category Network , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06).

[24]  Frank van Harmelen,et al.  Using Google distance to weight approximate ontology matches , 2007, WWW '07.

[25]  Carlotta Domeniconi,et al.  Building semantic kernels for text classification using wikipedia , 2008, KDD.

[26]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[27]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[28]  David D. Lewis,et al.  Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval , 1998, ECML.

[29]  Padhraic Smyth,et al.  Algorithms for estimating relative importance in networks , 2003, KDD '03.

[30]  Theodoros Lappas,et al.  Finding a team of experts in social networks , 2009, KDD.

[31]  Mark Baillie,et al.  Tripartite Hidden Topic Models for Personalised Tag Suggestion , 2010, ECIR.

[32]  Ian H. Witten,et al.  A knowledge-based search engine powered by wikipedia , 2007, CIKM '07.

[33]  Marios C. Angelides,et al.  Mobile Computing for M-Commerce , 2009 .

[34]  Craig Silverstein,et al.  Analysis of a Very Large Altavista Query Log" SRC Technical note #1998-14 , 1998 .

[35]  Ching-Yung Lin,et al.  Building term suggestion relational graphs from collective intelligence , 2009, WWW '09.

[36]  Allison Woodruff,et al.  Using thumbnails to search the Web , 2001, CHI.

[37]  James Ze Wang,et al.  The Story Picturing Engine---a system for automatic text illustration , 2006, TOMCCAP.

[38]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[39]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[40]  Graeme Hirst,et al.  Evaluating WordNet-based Measures of Lexical Semantic Relatedness , 2006, CL.

[41]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[42]  Volker Tresp,et al.  Soft Clustering on Graphs , 2005, NIPS.