Inference on heavy tails from dependent data

Statistics of extremes has been well developed for the case of independent and identically distributed (i.i.d.) observations. In a growing number of applications, however, the data appears dependent and heavy{tailed. We deal with problems of tail index and extreme quantile estimation from a sample of dependent random variables. Consistency and asymptotic normality of the corresponding estimators are established under mild mixing conditions. The accuracy of estimation is shown to be of the same order as if the data were independent. We suggest an approach to bias reduction. Besides limit theorems, we present a procedure of practical estimation.

[1]  Sergei Y. Novak Confidence intervals for a tail index estimator , 2000 .

[2]  Jan Beirlant,et al.  Excess functions and estimation of the extreme-value index , 1996 .

[3]  N. Herrndorf The invariance principle for ϕ-mixing sequences , 1983 .

[4]  S. Resnick Heavy tail modeling and teletraffic data: special invited paper , 1997 .

[5]  J. Einmahl Limit theorems for tail processes with application to intermediate quantile estimation , 1992 .

[6]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[7]  S. Resnick,et al.  Tail Index Estimation for Dependent Data , 1998 .

[8]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[9]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[10]  Sidney I. Resnick,et al.  Heavy Tail Modelling and Teletraffic Data , 1995 .

[11]  S. Utev,et al.  On the Central Limit Theorem for $\varphi$-Mixing Arrays of Random Variables , 1991 .

[12]  S. Novak On the Distribution of the Ratioof Sums of Random Variables , 1997 .

[13]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[14]  Jon Danielsson,et al.  The method of moments ratio estimator for the tail shape parameter , 1996 .

[15]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[16]  Charles M. Goldie,et al.  SLOW VARIATION WITH REMAINDER: THEORY AND APPLICATIONS , 1987 .

[17]  Serguei Novak Inference about the Pareto--type distribution , 1992 .

[18]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[19]  Sample ACF of Multivariate Stochastic Recurrence Equations With Application to GARCH , 1999 .

[20]  A. McNeil Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.

[21]  R. C. Bradley Basic Properties of Strong Mixing Conditions , 1985 .

[22]  Ishay Weissman,et al.  On blocks and runs estimators of the extremal index , 1998 .

[23]  M. R. Leadbetter,et al.  On the distribution of tail array sums for strongly mixing stationary sequences , 1998 .

[24]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[25]  S. Csörgo,et al.  Estimating the tail index , 1998 .

[26]  Tailen Hsing,et al.  Estimating the parameters of rare events , 1991 .

[27]  Alan H. Welsh,et al.  Best Attainable Rates of Convergence for Estimates of Parameters of Regular Variation , 1984 .

[28]  J. Pfanzagl On local uniformity for estimators and confidence limits , 2000 .

[29]  M. Meerschaert Regular Variation in R k , 1988 .

[30]  L. Horváth,et al.  Weighted Approximations in Probability and Statistics , 1993 .

[31]  Magda Peligrad,et al.  Invariance Principles for Mixing Sequences of Random Variables , 1982 .

[32]  H. Drees Weighted Approximations of Tail Processes under Mixing Conditions , 1999 .

[33]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[34]  Richard L. Smith,et al.  Estimating the Extremal Index , 1994 .

[35]  S. Utev,et al.  Asymptotics of the distribution of the ratio of sums of random variables , 1990 .

[36]  Edgar Kaufmann,et al.  Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .