Inference on heavy tails from dependent data
暂无分享,去创建一个
[1] Sergei Y. Novak. Confidence intervals for a tail index estimator , 2000 .
[2] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[3] N. Herrndorf. The invariance principle for ϕ-mixing sequences , 1983 .
[4] S. Resnick. Heavy tail modeling and teletraffic data: special invited paper , 1997 .
[5] J. Einmahl. Limit theorems for tail processes with application to intermediate quantile estimation , 1992 .
[6] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[7] S. Resnick,et al. Tail Index Estimation for Dependent Data , 1998 .
[8] Richard L. Smith. Estimating tails of probability distributions , 1987 .
[9] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[10] Sidney I. Resnick,et al. Heavy Tail Modelling and Teletraffic Data , 1995 .
[11] S. Utev,et al. On the Central Limit Theorem for $\varphi$-Mixing Arrays of Random Variables , 1991 .
[12] S. Novak. On the Distribution of the Ratioof Sums of Random Variables , 1997 .
[13] L. Haan,et al. Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .
[14] Jon Danielsson,et al. The method of moments ratio estimator for the tail shape parameter , 1996 .
[15] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[16] Charles M. Goldie,et al. SLOW VARIATION WITH REMAINDER: THEORY AND APPLICATIONS , 1987 .
[17] Serguei Novak. Inference about the Pareto--type distribution , 1992 .
[18] I. Ibragimov,et al. Independent and stationary sequences of random variables , 1971 .
[19] Sample ACF of Multivariate Stochastic Recurrence Equations With Application to GARCH , 1999 .
[20] A. McNeil. Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.
[21] R. C. Bradley. Basic Properties of Strong Mixing Conditions , 1985 .
[22] Ishay Weissman,et al. On blocks and runs estimators of the extremal index , 1998 .
[23] M. R. Leadbetter,et al. On the distribution of tail array sums for strongly mixing stationary sequences , 1998 .
[24] C. Goldie. IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .
[25] S. Csörgo,et al. Estimating the tail index , 1998 .
[26] Tailen Hsing,et al. Estimating the parameters of rare events , 1991 .
[27] Alan H. Welsh,et al. Best Attainable Rates of Convergence for Estimates of Parameters of Regular Variation , 1984 .
[28] J. Pfanzagl. On local uniformity for estimators and confidence limits , 2000 .
[29] M. Meerschaert. Regular Variation in R k , 1988 .
[30] L. Horváth,et al. Weighted Approximations in Probability and Statistics , 1993 .
[31] Magda Peligrad,et al. Invariance Principles for Mixing Sequences of Random Variables , 1982 .
[32] H. Drees. Weighted Approximations of Tail Processes under Mixing Conditions , 1999 .
[33] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[34] Richard L. Smith,et al. Estimating the Extremal Index , 1994 .
[35] S. Utev,et al. Asymptotics of the distribution of the ratio of sums of random variables , 1990 .
[36] Edgar Kaufmann,et al. Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .