ASTROD-GW: Overview and Progress
暂无分享,去创建一个
[1] Astrod orbit simulation and accuracy of relativistic parameter determination , 2000 .
[2] W. Ni,et al. Numerical simulation of time delay interferometry for eLISA/NGO , 2012, 1204.2125.
[3] COSMIC POLARIZATION ROTATION, COSMOLOGICAL MODELS, AND THE DETECTABILITY OF PRIMORDIAL GRAVITATIONAL WAVES , 2009, 0903.0756.
[4] Deployment and Simulation of the Astrod-Gw Formation , 2012, 1212.1253.
[5] Edward K. Porter,et al. Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce , 2008, 0811.1011.
[6] Clive C. Speake,et al. An interferometric sensor for satellite drag-free control , 2005 .
[7] G. Wang,et al. Time-delay Interferometry for ASTROD-GW☆ , 2012 .
[8] Massimo Tinto,et al. Time delay interferometry , 2003, Living Reviews in Relativity.
[9] Shinji Tsujikawa,et al. Dynamics of dark energy , 2006 .
[10] B. Schutz. Determining the Hubble constant from gravitational wave observations , 1986, Nature.
[11] W. Ni. Mini-ASTROD --- Mini-Astrodynamical Space Test of Relativity using Optical Devices , 2003 .
[12] Bernard F. Schutz,et al. Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.
[13] W. Ni,et al. Progress in laboratory research for fundamental physics space missions using optical devices , 2003 .
[14] C. Grimani. IMPLICATIONS OF GALACTIC AND SOLAR PARTICLE MEASUREMENTS ON BOARD INTERFEROMETERS FOR GRAVITATIONAL WAVE DETECTION IN SPACE , 2013 .
[15] Jonathan R. Gair,et al. Reconstructing the massive black hole cosmic history through gravitational waves , 2010, 1011.5893.
[16] H. Vocca,et al. Solar And Cosmic Ray Physics And The Space Environment: Studies For And With LISA , 2006 .
[17] A. Pai,et al. TESTS OF GENERAL RELATIVITY AND ALTERNATIVE THEORIES OF GRAVITY USING GRAVITATIONAL WAVE OBSERVATIONS , 2013, 1302.2198.
[18] R. Mcmillan,et al. APOLLO: millimeter lunar laser ranging , 2012 .
[19] W. Ni,et al. Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris , 2012, 1205.5175.
[20] W. Ni. Empirical Foundations of the Relativistic Gravity , 2005, gr-qc/0504116.
[21] Asteroid Perturbations and Mass Determination for the ASTROD Space Mission , 2004, astro-ph/0407606.
[22] Etienne Samain,et al. Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)—A class-M fundamental physics mission proposal for Cosmic Vision 2015–2025 , 2008, 0802.0582.
[23] D. Wineland,et al. Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.
[24] W. Ni,et al. Astrodynamical Space Test of Relativity Using Optical Devices i (astrod i) — Mission Overview , 2012, 1212.3645.
[25] A. Vecchio,et al. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.
[26] Wei-Tou Ni,et al. ASTROD–AN OVERVIEW , 2002 .
[27] S. Dhurandhar,et al. Time-delay interferometry for LISA with one arm dysfunctional , 2010, 1001.4911.
[28] W. Ni,et al. Progress in laboratory R & D for fundamental physics space missions - weak light phase-locking, fibre-linked heterodyne interferometry, fibre delay line and picometre real-time motion control , 1996 .
[29] A. Vecchio,et al. Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays , 2008, 0809.3412.
[30] G. Wang,et al. Design of ASTROD-GW Orbit☆☆☆ , 2010 .
[31] F. T. Collaboration,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[32] R. Manchester. PULSAR SEARCHING AND TIMING , 2013 .
[33] P. Guillemot,et al. Status of the T2L2/Jason2 Experiment , 2010 .
[34] B. C. Joshi. PULSAR TIMING ARRAYS , 2013, 1301.5730.
[35] W. Ni,et al. ASTROD-GW Time Delay Interferometry , 2011 .
[36] J. Primack. Hidden Growth of Supermassive Black Holes in Galaxy Mergers , 2010, Science.
[37] J. Armstrong,et al. Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .
[38] B. Paul. ASTROSAT: Some Key Science Prospects , 2013, 1307.5637.
[39] Wei-Tou Ni,et al. ASTROD and ASTROD I -- Overview and Progress , 2007, 0712.2492.
[40] P. Natarajan,et al. Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars , 2010, Science.
[41] Wei-Tou Ni. Dark energy, co-evolution of massive black holes with galaxies, and ASTROD-GW , 2010 .
[42] Peter L. Bender. LISA sensitivity below 0.1 mHz , 2003 .
[43] K. G. Arun,et al. Fifth ASTROD Symposium and Outlook of Direct Gravitational-Wave Detection , 2012 .
[44] W. Ni,et al. PICO-WATT AND FEMTO-WATT WEAK-LIGHT PHASE LOCKING , 2002 .
[45] A. P. Patón. Current Prospects for Astrod Inertial Sensor , 2007, 0704.3465.
[46] Robert L. Byer,et al. Advanced gravitational reference sensor for high precision space interferometers , 2005 .
[47] Bernard F. Schutz,et al. Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.
[48] Gravitational waves, dark energy and inflation , 2010, 1003.3899.
[49] C. Lämmerzahl,et al. ASTROD optimized for Gravitational Wave detection: ASTROD-GW , 2010 .
[50] A. Peters,et al. OPTIS: a satellite-based test of special and general relativity , 2001, gr-qc/0104067.
[51] W. Ni,et al. ASTROD I: Mission Concept and Venus Flybys , 2006 .
[52] K. Yagi,et al. SCIENTIFIC POTENTIAL OF DECIGO PATHFINDER AND TESTING GR WITH SPACE-BORNE GRAVITATIONAL WAVE INTERFEROMETERS , 2013, 1302.2388.
[53] Alison J. Farmer,et al. The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.
[54] E. Williams,et al. The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections , 2007, 0710.0890.
[55] N. Cornish,et al. Beyond LISA: Exploring future gravitational wave missions , 2005, gr-qc/0506015.