A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems

In this article, we develop an explicit symmetric linear phase-fitted four-step method with a free coefficient as parameter. The parameter is used for the optimization of the method in order to solve efficiently the Schrodinger equation and related oscillatory problems. We evaluate the local truncation error and the interval of periodicity as functions of the parameter. We reveal a direct relationship between the periodicity interval and the local truncation error. We also measure the efficiency of the new method for a wide range of possible values of the parameter and compare it to other well known methods from the literature. The analysis and the numerical results help us to determine the optimal values of the parameter, which render the new method highly efficient.

[1]  Theodore E. Simos,et al.  Trigonometrically fitted fifth-order runge-kutta methods for the numerical solution of the schrödinger equation , 2005, Math. Comput. Model..

[2]  R. Thomas,et al.  Phase properties of high order, almostP-stable formulae , 1984 .

[3]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[4]  T. E. Simos,et al.  A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation , 2005 .

[5]  Theodore E. Simos Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution , 2004, Appl. Math. Lett..

[6]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[7]  Pierluigi Amodio,et al.  High-order finite difference schemes for the solution of second-order BVPs , 2005 .

[8]  Hans Van de Vyver Phase-fitted and amplification-fitted two-step hybrid methods for y˝= f ( x,y ) , 2007 .

[9]  Theodore E. Simos,et al.  Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems , 2007, Comput. Phys. Commun..

[10]  Tom E. Simos,et al.  An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems , 1994 .

[11]  Theodore E. Simos,et al.  On Eight-Step Methods with Vanished Phase-Lag and Its Derivatives for the Numerical Solution of the Schrodinger Equation , 2011 .

[12]  T. E. Simos,et al.  Some Modified Runge-Kutta Methods for the Numerical Solution of Some Specific SCHRÖDINGER Equations and Related Problems , 1996 .

[13]  Zacharias A. Anastassi,et al.  New Trigonometrically Fitted Six-Step Symmetric Methods for the Efficient Solution of the Schrodinger Equation , 2008 .

[14]  M. I. Qaisi ANALYTICAL SOLUTION OF THE FORCED DUFFING'S OSCILLATOR , 1996 .

[15]  Gerald D. Quinlan Resonances and instabilities in symmetric multistep methods , 1999 .

[16]  Zacharias A. Anastassi A new symmetric linear eight-step method with fifth trigonometric order for the efficient integration of the Schrödinger equation , 2011, Appl. Math. Lett..

[17]  Theodore E. Simos,et al.  A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation , 2011 .

[18]  A. A. Kosti,et al.  An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems , 2009 .

[19]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[20]  Georgios Psihoyios,et al.  A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions , 2005 .

[21]  T. E. Simos AN ACCURATE EXPONENTIALLY FITTED EXPLICIT FOUR-STEP METHOD FOR THE NUMERICAL SOLUTION OF THE RADIAL SCHRÖDINGER EQUATION , 1998 .

[22]  Theodore E. Simos,et al.  A symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions , 2011, Comput. Phys. Commun..

[23]  Tom E. Simos,et al.  A finite-difference method for the numerical solution of the Schro¨dinger equation , 1997 .

[24]  T. Simos Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrödinger Equation , 2010 .

[25]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[26]  S. Tremaine,et al.  Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .

[27]  Pratibha,et al.  INVARIANT SOLUTIONS OF EINSTEIN FIELD EQUATION FOR NONCONFORMALLY FLAT FLUID SPHERES OF EMBEDDING CLASS ONE , 2010 .

[28]  T. E. Simos SOME LOW ORDER TWO-STEP ALMOST P-STABLE METHODS WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL INTEGRATION OF THE RADIAL SCHRÖDINGER EQUATION , 1995 .

[29]  Jeff Cash,et al.  Lobatto-Obrechkoff Formulae for 2nd Order Two-Point Boundary Value Problems , 2006 .

[30]  Zacharias A. Anastassi,et al.  Numerical multistep methods for the efficient solution of quantum mechanics and related problems , 2009 .

[31]  Ibraheem Alolyan,et al.  Mulitstep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation , 2010 .

[32]  Zhongcheng Wang P-stable linear symmetric multistep methods for periodic initial-value problems , 2005, Comput. Phys. Commun..

[33]  Theodore E. Simos,et al.  Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems , 2011, Comput. Math. Appl..

[34]  Theodore E. Simos,et al.  ENCKE METHODS ADAPTED TO REGULARIZING VARIABLES , 2000 .

[35]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[36]  T. E. Simos,et al.  High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation , 2010 .

[37]  G. A. Panopoulos,et al.  Two New Optimized Eight-Step Symmetric Methods for the Efficient Solution of the Schrodinger Equation and Related Problems , 2008 .

[38]  P. Amodio,et al.  Symmetric Boundary Value Methods for Second Order Initial and Boundary Value Problems , 2006 .

[39]  Theodore E. Simos High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems , 2008, Comput. Phys. Commun..

[40]  Theodore E. Simos,et al.  An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems , 2012, Comput. Phys. Commun..

[41]  A. C. Allison,et al.  Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .

[42]  T. Monovasilis,et al.  Symplectic integrators for the numerical solution of the Schrödinger equation , 2003 .

[43]  Zacharias A. Anastassi,et al.  A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation , 2007 .

[44]  Alessandra Sestini,et al.  BS Linear Multistep Methods on Non-uniform Meshes , 2006 .

[45]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[46]  Zacharias A. Anastassi,et al.  A Six-Step P-stable Trigonometrically-Fitted Method for the Numerical Integration of the Radial Schrodinger Equation , 2008 .

[47]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[48]  Donato Trigiante,et al.  Stability Analysis of Linear Multistep Methods via Polynomial Type Variation 1 , 2007 .

[49]  Theodore E. Simos,et al.  Exponentially-fitted Runge-Kutta-Nystro"m method for the numerical solution of initial-value problems with oscillating solutions , 2002, Appl. Math. Lett..