Linearization-based algorithms for mixed-integer nonlinear programs with convex continuous relaxation

We present two linearization-based algorithms for mixed-integer nonlinear programs (MINLPs) having a convex continuous relaxation. The key feature of these algorithms is that, in contrast to most existing linearization-based algorithms for convex MINLPs, they do not require the continuous relaxation to be defined by convex nonlinear functions. For example, these algorithms can solve to global optimality MINLPs with constraints defined by quasiconvex functions. The first algorithm is a slightly modified version of the LP/NLP-based branch-and-bouund $$(\text{ LP/NLP-BB })$$(LP/NLP-BB) algorithm of Quesada and Grossmann, and is closely related to an algorithm recently proposed by Bonami et al. (Math Program 119:331–352, 2009). The second algorithm is a hybrid between this algorithm and nonlinear programming based branch-and-bound. Computational experiments indicate that the modified LP/NLP-BB method has comparable performance to LP/NLP-BB on instances defined by convex functions. Thus, this algorithm has the potential to solve a wider class of MINLP instances without sacrificing performance.

[1]  Tapio Westerlund,et al.  Extended Cutting Plane Algorithm , 2009, Encyclopedia of Optimization.

[2]  R. J. Dakin,et al.  A tree-search algorithm for mixed integer programming problems , 1965, Comput. J..

[3]  Samir Elhedhli,et al.  Service System Design with Immobile Servers, Stochastic Demand, and Congestion , 2006, Manuf. Serv. Oper. Manag..

[4]  Ignacio E. Grossmann,et al.  LOGMIP: a disjunctive 0–1 nonlinear optimizer for process systems models , 1997 .

[5]  Oktay Günlük,et al.  IBM Research Report MINLP Strengthening for Separable Convex Quadratic Transportation-Cost UFL , 2007 .

[6]  S. Leyffer,et al.  Solving Mixed-Integer Nonlinear Programs by QP-Diving , 2012 .

[7]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[8]  R. Sargent,et al.  Optimum Design of Multipurpose Chemical Plants , 1979 .

[9]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[10]  David W.T. Rippin,et al.  Optimal design of a multi-product batch plant , 1998 .

[11]  Jeff T. Linderoth,et al.  Algorithms and Software for Convex Mixed Integer Nonlinear Programs , 2012 .

[12]  R. Boorstyn,et al.  Large-Scale Network Topological Optimization , 1977, IEEE Trans. Commun..

[13]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[14]  I. Grossmann,et al.  An LP/NLP based branch and bound algorithm for convex MINLP optimization problems , 1992 .

[15]  Oktay Günlük,et al.  Perspective Reformulation and Applications , 2012 .

[16]  Tapio Westerlund,et al.  A cutting plane method for minimizing pseudo-convex functions in the mixed integer case , 2000 .

[17]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[18]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[19]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[20]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[21]  Sven Leyffer,et al.  FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs , 2010, INFORMS J. Comput..

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Oktay Günlük,et al.  Perspective reformulations of mixed integer nonlinear programs with indicator variables , 2010, Math. Program..

[24]  Lorenz T. Biegler,et al.  Mixed-Integer Approach for Obtaining Unique Solutions in Source Inversion of Water Networks , 2006 .

[25]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[26]  Michael R. Bussieck,et al.  MINLPLib - A Collection of Test Models for Mixed-Integer Nonlinear Programming , 2003, INFORMS J. Comput..

[27]  Iiro Harjunkoski,et al.  MINLP: Trim-loss Problem , 2009, Encyclopedia of Optimization.

[28]  I. Grossmann,et al.  Cyclic scheduling of continuous parallel‐process units with decaying performance , 1998 .

[29]  John E. Mitchell,et al.  An improved branch and bound algorithm for mixed integer nonlinear programs , 1994, Comput. Oper. Res..

[30]  Lorenz T. Biegler,et al.  A Mixed Integer Approach for Obtaining Unique Solutions in Source Inversion of Drinking Water Networks , 2005 .

[31]  Adam N. Letchford,et al.  Non-convex mixed-integer nonlinear programming: A survey , 2012 .

[32]  Antonio Flores-Tlacuahuac,et al.  Simultaneous mixed-integer dynamic optimization for integrated design and control , 2007, Comput. Chem. Eng..

[33]  Tapio Westerlund,et al.  Optimization of block layout design problems with unequal areas: A comparison of MILP and MINLP optimization methods , 2005, Comput. Chem. Eng..

[34]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization: Theory, Methods and (NONCONVEX OPTIMIZATION AND ITS APPLICATIONS Volume 37) (Nonconvex Optimization and Its Applications) , 2005 .

[35]  I. Grossmann Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques , 2002 .

[36]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[37]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[38]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[39]  Gérard Cornuéjols,et al.  A Feasibility Pump for mixed integer nonlinear programs , 2009, Math. Program..

[40]  T. Westerlund,et al.  An extended cutting plane method for solving convex MINLP problems , 1995 .

[41]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[42]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[43]  I. Grossmann,et al.  Logic-based MINLP algorithms for the optimal synthesis of process networks , 1996 .

[44]  N. Sahinidis,et al.  Convexification and Global Optimization in Continuous And , 2002 .

[45]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..