Brain-, Gene-, and Quantum Inspired Computational Intelligence: Challenges and Opportunities

This chapter discusses opportunities and challenges for the creation of methods of computational intelligence (CI) and more specifically – artificial neural networks (ANN), inspired by principles at different levels of information processing in the brain: cognitive-, neuronal-, genetic-, and quantum, and mainly, the issues related to the integration of these principles into more powerful and accurate CI methods. It is demonstrated how some of these methods can be applied to model biological processes and to improve our understanding in the subject area, along with other – being generic CI methods applicable to challenging generic AI problems. The chapter first offers a brief presentation of some principles of information processing at different levels of the brain, and then presents brain-inspired, geneinspired and quantum inspired CI. The main contribution of the chapter though is the introduction of methods inspired by the integration of principles from several levels of information processing, namely: (1) a computational neurogenetic model, that combines in one model gene information related to spiking neuronal activities; (2) a general framework of a quantum spiking neural network model; (3) a general framework of a quantum computational neuro-genetic model. Many open questions and challenges are discussed, along with directions for further research.

[1]  N. Kasabov,et al.  A computational neurogenetic model of a spiking neuron , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[2]  R. Penrose,et al.  Shadows of the Mind , 1994 .

[3]  David Saad,et al.  Online Learning in Radial Basis Function Networks , 1997, Neural Computation.

[4]  Lee Spector,et al.  Automatic Quantum Computer Programming: A Genetic Programming Approach (Genetic Programming) , 2004 .

[5]  Geoffrey E. Hinton 20 – CONNECTIONIST LEARNING PROCEDURES1 , 1990 .

[6]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[7]  Stephen Grossberg,et al.  Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps , 1992, IEEE Trans. Neural Networks.

[8]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[9]  Steven O. Moldin,et al.  Methods in Genomic Neuroscience , 2001 .

[10]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[11]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[12]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[13]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[14]  James A. Anderson,et al.  An Introduction To Neural Networks , 1998 .

[15]  D. Saad,et al.  Dynamics of on-line learning in radial basis function networks , 1997 .

[16]  Jacek M. Zurada,et al.  Knowledge-based neurocomputing , 2000 .

[17]  Ganesh K. Venayagamoorthy,et al.  Quantum-inspired Evolutionary Algorithms and Binary Particle Swarm Optimization for Training MLP and SRN Neural Networks , 2005 .

[18]  Tad Hogg,et al.  Quantum optimization , 2000, Inf. Sci..

[19]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[20]  Michael Biehl,et al.  On-line Learning of Prototypes and Principal Components , 1998 .

[21]  Jill P. Mesirov,et al.  Computational Biology , 2018, Encyclopedia of Parallel Computing.

[22]  Xin Yao,et al.  Evolutionary Artificial Neural Networks , 1993, Int. J. Neural Syst..

[23]  Nikola Kasabov,et al.  Foundations Of Neural Networks, Fuzzy Systems, And Knowledge Engineering [Books in Brief] , 1996, IEEE Transactions on Neural Networks.

[24]  Dan Ventura,et al.  Quantum Neural Networks , 2000 .

[25]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[26]  Federico Girosi,et al.  Regularization Theory, Radial Basis Functions and Networks , 1994 .

[27]  Ian J. Kirk,et al.  The Role of Theta-Range Oscillations in Synchronising and Integrating Activity in Distributed Mnemonic Networks , 2003, Cortex.

[28]  Paul J. Werbos,et al.  Backpropagation Through Time: What It Does and How to Do It , 1990, Proc. IEEE.

[29]  M. Arbib Brains, Machines, and Mathematics , 1987, Springer US.

[30]  John D. Walker,et al.  Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. , 2003, Environmental health perspectives.

[31]  Nikola Kasabov,et al.  Brain-like Computing and Intelligent Information Systems , 1998 .

[32]  Chris M. Brown,et al.  Information Science and Bioinformatics , 2000 .

[33]  Nikola K. Kasabov,et al.  A two-stage methodology for gene regulatory network extraction from time-course gene expression data , 2004, IEEE International Workshop on Biomedical Circuits and Systems, 2004..

[34]  Shun-ichi Amari,et al.  A Theory of Adaptive Pattern Classifiers , 1967, IEEE Trans. Electron. Comput..

[35]  Nikola Kasabov,et al.  Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines , 2002, IEEE Transactions on Neural Networks.

[36]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[37]  Jing Liu,et al.  Quantum-behaved particle swarm optimization with mutation operator , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[38]  Karl H. Pribram,et al.  Rethinking neural networks : quantum fields and biological data , 1993 .

[39]  G. RESCONP,et al.  A DATA MODEL FOR THE MORPHOGENETIC NEURON , 2000 .

[40]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[41]  Dan Ventura,et al.  Implementing competitive learning in a quantum system , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[42]  Nikola Kasabov,et al.  Evolving Connectionist Systems: The Knowledge Engineering Approach , 2007 .

[43]  Christopher G. Atkeson,et al.  Constructive Incremental Learning from Only Local Information , 1998, Neural Computation.

[44]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[45]  S. Grossberg On learning and energy-entropy dependence in recurrent and nonrecurrent signed networks , 1969 .

[46]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[47]  S. Grossberg,et al.  Pattern Recognition by Self-Organizing Neural Networks , 1991 .

[48]  Tarun Khanna,et al.  Foundations of neural networks , 1990 .

[49]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[50]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[51]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[52]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[53]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[54]  Nikola K. Kasabov,et al.  Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[55]  Jascha Hoffman THE BIRTH OF THE MIND: HOW A TINY NUMBER OF GENES CREATES THE COMPLEXITY OF HUMAN THOUGHT (Book) , 2004 .

[56]  C. Koch,et al.  Quantum mechanics in the brain , 2006, Nature.

[57]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[58]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[59]  Tony R. Martinez,et al.  Quantum associative memory , 2000, Inf. Sci..

[60]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[61]  Shaoning Pang,et al.  Incremental linear discriminant analysis for classification of data streams , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[62]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[63]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[64]  Enrico Blanzieri,et al.  Learning Radial Basis Function Networks On-line , 1996, International Conference on Machine Learning.

[65]  John G. Taylor The race for consciousness , 1999 .

[66]  Roger Penrose,et al.  Shadows of the mind - a search for the missing science of consciousness , 1994 .

[67]  George J. Klir,et al.  Conceptual Foundations Of Quantum Mechanics: The Role Of Evidence Theory, Quantum Sets, And Modal Logic , 1999 .

[68]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[69]  Nikola K. Kasabov,et al.  NFI: a neuro-fuzzy inference method for transductive reasoning , 2005, IEEE Transactions on Fuzzy Systems.

[70]  Jong-Hwan Kim,et al.  Quantum-Inspired Evolutionary Algorithm-Based Face Verification , 2003, GECCO.

[71]  Michael Brooks,et al.  Quantum Computing and Communications , 1999, Springer London.

[72]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[73]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[74]  Tony Hey,et al.  Quantum computing: an introduction , 1999 .

[75]  Carlo A. Trugenberger,et al.  Quantum Pattern Recognition , 2002, Quantum Inf. Process..

[76]  Simei Gomes Wysoski,et al.  On-Line Learning with Structural Adaptation in a Network of Spiking Neurons for Visual Pattern Recognition , 2006, ICANN.

[77]  Rey-Chue Hwang,et al.  Quantum NN vs. NN in signal recognition , 2005, Third International Conference on Information Technology and Applications (ICITA'05).

[78]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[79]  Ajit Narayanan,et al.  Quantum artificial neural network architectures and components , 2000, Inf. Sci..

[80]  Nobuyuki Matsui,et al.  Qubit neural network and its learning efficiency , 2005, Neural Computing & Applications.

[81]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[82]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[83]  Hilbert J. Kappen,et al.  On-line learning processes in artificial neural networks , 1993 .

[84]  Nikola K. Kasabov,et al.  Gene Regulatory Network Discovery from Time-Series Gene Expression Data - A Computational Intelligence Approach , 2004, ICONIP.

[85]  Shigeo Abe,et al.  Incremental learning of feature space and classifier for face recognition , 2005, Neural Networks.

[86]  Stephen Grossberg,et al.  Studies of mind and brain , 1982 .