Recursive approach in sparse matrix LU factorization
暂无分享,去创建一个
[1] Victor Eijkhout,et al. Algorithmic bombardment for the iterative solution of linear systems: a poly-iterative approach , 1994 .
[2] Barry W. Peyton,et al. Progress in Sparse Matrix Methods for Large Linear Systems On Vector Supercomputers , 1987 .
[3] Xiaoye Sherry Li,et al. Sparse Gaussian Elimination on High Performance Computers , 1996 .
[4] Fred G. Gustavson,et al. A Recursive Formulation of the Cholesky Factorization Operating on a Matrix in Packed Storage Form , 1999, PPSC.
[5] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[6] Y. Saad,et al. Communication complexity of the Gaussian elimination algorithm on multiprocessors , 1986 .
[7] Isak Jonsson,et al. Minimal-storage high-performance Cholesky factorization via blocking and recursion , 2000, IBM J. Res. Dev..
[8] Sivan Toledo. Locality of Reference in LU Decomposition with Partial Pivoting , 1997, SIAM J. Matrix Anal. Appl..
[9] Iain S. Duff,et al. The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..
[10] V. Strassen. Gaussian elimination is not optimal , 1969 .
[11] Fred G. Gustavson,et al. LAWRA: Linear Algebra with Recursive Algorithms , 2000, PARA.
[12] John K. Reid,et al. The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.
[13] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[14] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[15] J. W. Walker,et al. Direct solutions of sparse network equations by optimally ordered triangular factorization , 1967 .
[16] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[17] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[18] E. Cuthill,et al. Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.
[19] James Demmel,et al. A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..
[20] Fred G. Gustavson,et al. Recursion leads to automatic variable blocking for dense linear-algebra algorithms , 1997, IBM J. Res. Dev..
[21] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[22] Erik Elmroth,et al. Applying recursion to serial and parallel QR factorization leads to better performance , 2000, IBM J. Res. Dev..
[23] D. Rose,et al. Generalized nested dissection , 1977 .
[24] R. C. Whaley,et al. Automatically Tuned Linear Algebra Software (ATLAS) , 2011, Encyclopedia of Parallel Computing.
[25] S. Sloan. An algorithm for profile and wavefront reduction of sparse matrices , 1986 .
[26] John G. Lewis,et al. Sparse matrix test problems , 1982, SGNM.
[27] Joseph W. H. Liu,et al. Elimination Structures for Unsymmetric Sparse $LU$ Factors , 1993, SIAM J. Matrix Anal. Appl..
[28] Jack J. Dongarra,et al. Automatically Tuned Linear Algebra Software , 1998, Proceedings of the IEEE/ACM SC98 Conference.
[29] Jack J. Dongarra,et al. An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.
[30] William G. Poole,et al. An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .
[31] Isak Jonsson,et al. Recursive Blocked Data Formats and BLAS's for Dense Linear Algebra Algorithms , 1998, PARA.
[32] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[33] Marcin Paprzycki,et al. Using Strassen's matrix multiplication in high performance solution of linear systems , 1996 .