Recursive approach in sparse matrix LU factorization

This paper describes a recursive method for the LU factorization of sparse matrices. The recursive formulation of common linear algebra codes has been proven very successful in dense matrix computations. An extension of the recursive technique for sparse matrices is presented. Performance results given here show that the recursive approach may perform comparable to leading software packages for sparse matrix factorization in terms of execution time, memory usage, and error estimates of the solution.

[1]  Victor Eijkhout,et al.  Algorithmic bombardment for the iterative solution of linear systems: a poly-iterative approach , 1994 .

[2]  Barry W. Peyton,et al.  Progress in Sparse Matrix Methods for Large Linear Systems On Vector Supercomputers , 1987 .

[3]  Xiaoye Sherry Li,et al.  Sparse Gaussian Elimination on High Performance Computers , 1996 .

[4]  Fred G. Gustavson,et al.  A Recursive Formulation of the Cholesky Factorization Operating on a Matrix in Packed Storage Form , 1999, PPSC.

[5]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[6]  Y. Saad,et al.  Communication complexity of the Gaussian elimination algorithm on multiprocessors , 1986 .

[7]  Isak Jonsson,et al.  Minimal-storage high-performance Cholesky factorization via blocking and recursion , 2000, IBM J. Res. Dev..

[8]  Sivan Toledo Locality of Reference in LU Decomposition with Partial Pivoting , 1997, SIAM J. Matrix Anal. Appl..

[9]  Iain S. Duff,et al.  The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[10]  V. Strassen Gaussian elimination is not optimal , 1969 .

[11]  Fred G. Gustavson,et al.  LAWRA: Linear Algebra with Recursive Algorithms , 2000, PARA.

[12]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[13]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[14]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[15]  J. W. Walker,et al.  Direct solutions of sparse network equations by optimally ordered triangular factorization , 1967 .

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[18]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[19]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[20]  Fred G. Gustavson,et al.  Recursion leads to automatic variable blocking for dense linear-algebra algorithms , 1997, IBM J. Res. Dev..

[21]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[22]  Erik Elmroth,et al.  Applying recursion to serial and parallel QR factorization leads to better performance , 2000, IBM J. Res. Dev..

[23]  D. Rose,et al.  Generalized nested dissection , 1977 .

[24]  R. C. Whaley,et al.  Automatically Tuned Linear Algebra Software (ATLAS) , 2011, Encyclopedia of Parallel Computing.

[25]  S. Sloan An algorithm for profile and wavefront reduction of sparse matrices , 1986 .

[26]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[27]  Joseph W. H. Liu,et al.  Elimination Structures for Unsymmetric Sparse $LU$ Factors , 1993, SIAM J. Matrix Anal. Appl..

[28]  Jack J. Dongarra,et al.  Automatically Tuned Linear Algebra Software , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[29]  Jack J. Dongarra,et al.  An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.

[30]  William G. Poole,et al.  An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .

[31]  Isak Jonsson,et al.  Recursive Blocked Data Formats and BLAS's for Dense Linear Algebra Algorithms , 1998, PARA.

[32]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[33]  Marcin Paprzycki,et al.  Using Strassen's matrix multiplication in high performance solution of linear systems , 1996 .