Indecomposable orthogonal invariants of several matrices over a field of positive characteristic

We consider the algebra of invariants of [Formula: see text]-tuples of [Formula: see text] matrices under the action of the orthogonal group by simultaneous conjugation over an infinite field of characteristic [Formula: see text] different from two. It is well known that this algebra is generated by the coefficients of the characteristic polynomial of all products of generic and transpose generic [Formula: see text] matrices. We establish that in case [Formula: see text] the maximal degree of indecomposable invariants tends to infinity as [Formula: see text] tends to infinity. In other words, there does not exist a constant [Formula: see text] such that it only depends on [Formula: see text] and the considered algebra of invariants is generated by elements of degree less than [Formula: see text] for any [Formula: see text]. This result is well-known in case of the action of the general linear group. On the other hand, for the rest of [Formula: see text] the given phenomenon does not hold. We investigate the same problem for the cases of symmetric and skew-symmetric matrices.

[1]  F. R. Gantmakher The Theory of Matrices , 1984 .

[2]  D. Djoković Poincare series of some pure and mixed trace algebras of two generic matrices , 2006, math/0609262.

[3]  Stephen Donkin,et al.  Invariants of several matrices , 1992 .

[4]  D. Đoković,et al.  Orthogonal invariants of a matrix of order four and applications , 2005 .

[5]  A. Lopatin Orthogonal invariants of skew-symmetric matrices , 2010, 1004.3082.

[6]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[7]  Y. Teranishi The ring of invariants of matrices , 1986, Nagoya Mathematical Journal.

[8]  Invariant theory of special orthogonal groups. , 1995 .

[9]  A. Zubkov A generalization of the Razmyslov-Procesi theorem , 1996 .

[10]  J. Weyman,et al.  Generalized quivers associated to reductive groups , 2002 .

[11]  Y. Teranishi The Hilbert series of rings of matrix concomitants , 1988, Nagoya Mathematical Journal.

[12]  A. Lopatin Relations Between O(n)-Invariants of Several Matrices , 2009, 0902.4266.

[13]  A. A. Lopatin Relatively Free Algebras with the Identity x 3 = 0 , 2005 .

[14]  A. Zubkov Invariants for an adjoint action of classical groups , 1999 .

[15]  Mátyás Domokos,et al.  Rings of matrix invariants in positive characteristic , 2002 .

[16]  Invariants of quivers under the action of classical groups , 2006, math/0608750.

[17]  Symplectic polynomial invariants of one or two matrices of small size , 2008, 0808.3204.

[18]  Hanspeter Kraft,et al.  Geometrische Methoden in der Invariantentheorie , 1984 .

[19]  P. Hall,et al.  On a conjecture of Nagata , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  C. Procesi,et al.  Computing with 2 × 2 matrices , 1984 .

[21]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[22]  Über symmetrische, alternierende und orthogonale Normalformen von Matrizen. , 1930 .

[23]  A. Lopatin The Invariant Ring of Triples of 3x3 Matrices over a Field of Arbitrary Characteristic , 2007, 0704.2410.

[24]  M. Nagata On the nilpotency of nil-algebras. , 1952 .

[25]  Ju P Razmyslov TRACE IDENTITIES OF FULL MATRIX ALGEBRAS OVER A FIELD OF CHARACTERISTIC ZERO , 1974 .

[26]  A. Zubkov INVARIANTS OF MIXED REPRESENTATIONS OF QUIVERS I , 2003 .

[27]  D. Ðokovic Poincaré series of some pure and mixed trace algebras of two generic matrices , 2007 .

[28]  V. Drensky,et al.  Generators of invariants of two 4 × 4 matrices , 2006 .

[29]  Claudio Procesi,et al.  The invariant theory of n × n matrices , 1976 .