Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia

[1]  U. B. Jagtap,et al.  Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity , 2013 .

[2]  P. Velusamy,et al.  Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  P. Perumal,et al.  Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity , 2013 .

[4]  A. Pandey,et al.  Secretome analysis of the fungus Trichoderma harzianum grown on cellulose , 2012, Proteomics.

[5]  S. Chakroborty,et al.  Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[6]  M. Gunasekaran,et al.  Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. , 2011, Colloids and surfaces. B, Biointerfaces.

[7]  G. Mansoori,et al.  Biosynthesis of Silver Nanoparticles by Fungus Trichoderma Reesei (A Route for LargeScale Production of AgNPs) , 2011 .

[8]  S. Leite,et al.  Trichoderma harzianum IOC-4038: A Promising Strain for the Production of a Cellulolytic Complex with Significant β-Glucosidase Activity from Sugarcane Bagasse Cellulignin , 2010, Applied biochemistry and biotechnology.

[9]  Ajay Misra,et al.  Green synthesis of silver nanoparticles using seed extract of Jatropha curcas , 2009 .

[10]  K. G. Gopchandran,et al.  Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  S. Kale,et al.  Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum , 2008, Nanotechnology.

[12]  Arnab Roy,et al.  Characterization of enhanced antibacterial effects of novel silver nanoparticles , 2007, Nanotechnology.

[13]  K. Peng,et al.  Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. , 2007, Journal of biochemical and biophysical methods.

[14]  Chi-Ming Che,et al.  Proteomic analysis of the mode of antibacterial action of silver nanoparticles. , 2006, Journal of proteome research.

[15]  K. C. Bhainsa,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. , 2006, Colloids and surfaces. B, Biointerfaces.

[16]  M. Yacamán,et al.  The bactericidal effect of silver nanoparticles , 2005, Nanotechnology.

[17]  P. Mateos,et al.  Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens , 1997, Applied and environmental microbiology.

[18]  A. Noorlidah,et al.  Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica , 2013 .

[19]  Priyabrata Mukherjee,et al.  The use of microorganisms for the formation of metal nanoparticles and their application , 2005, Applied Microbiology and Biotechnology.