The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer

[1]  P. Høyer Conjugated operators in quantum algorithms , 1999 .

[2]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Dima Grigoriev,et al.  Testing Shift-Equivalence of Polynomials by Deterministic, Probabilistic and Quantum Machines , 1997, Theor. Comput. Sci..

[5]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[6]  H. Mabuchi,et al.  Inversion of quantum jumps in quantum optical systems under continuous observation. , 1996, Physical review letters.

[7]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[8]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[9]  A.Yu.Kitaev Quantum measurements and the Abelian Stabilizer Problem , 1995, quant-ph/9511026.

[10]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[11]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  H. Lenstra,et al.  A rigorous time bound for factoring integers , 1992 .

[15]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.