Histochemistry and transcriptomics of mucins and peritrophic membrane (PM) proteins along the midgut of a beetle with incomplete PM and their complementary function.

[1]  Cheng Lu,et al.  Characteristics of the Peritrophic Matrix of the Silkworm, Bombyx mori and Factors Influencing Its Formation , 2021, Insects.

[2]  Siqintoya Wu,et al.  Identification of mucins and their expression in the vector mosquito Aedes albopictus , 2020, Journal of Vector Ecology.

[3]  Shaohua Wang,et al.  Functional redundancy of structural proteins of the peritrophic membrane in Trichoplusia ni. , 2020, Insect biochemistry and molecular biology.

[4]  W. Terra,et al.  Evolutionary trends of digestion and absorption in the major insect orders. , 2020, Arthropod structure & development.

[5]  M. Silva-Filho,et al.  The Evolution, Gene Expression Profile, and Secretion of Digestive Peptidases in Lepidoptera Species , 2020, Catalysts.

[6]  Sudhir Kumar,et al.  Molecular Evolutionary Genetics Analysis (MEGA) for macOS. , 2020, Molecular biology and evolution.

[7]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[8]  W. Terra,et al.  Domain structure and expression along the midgut and carcass of peritrophins and cuticle proteins analogous to peritrophins in insects with and without peritrophic membrane. , 2019, Journal of insect physiology.

[9]  T. M. Venancio,et al.  Transcriptomic analyses uncover emerging roles of mucins, lysosome/secretory addressing and detoxification pathways in insect midguts. , 2018, Current opinion in insect science.

[10]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[11]  W. Terra,et al.  The roles of mucus‐forming mucins, peritrophins and peritrophins with mucin domains in the insect midgut , 2018, Insect molecular biology.

[12]  Yun-Ru Chen,et al.  Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. , 2015, Insect biochemistry and molecular biology.

[13]  R. Beeman,et al.  Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. , 2014, Insect biochemistry and molecular biology.

[14]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[15]  H. Hausen,et al.  Early Divergence, Broad Distribution, and High Diversity of Animal Chitin Synthases , 2014, Genome biology and evolution.

[16]  Hsiao Yu Fang,et al.  Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. , 2013, Cell reports.

[17]  R. Beeman,et al.  Gene Families of Cuticular Proteins Analogous to Peritrophins (CPAPs) in Tribolium castaneum Have Diverse Functions , 2012, PloS one.

[18]  Vincent J. Lynch,et al.  Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples , 2012, Theory in Biosciences.

[19]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[20]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[21]  R. Beeman,et al.  Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. , 2010, Insect biochemistry and molecular biology.

[22]  S. Herrero,et al.  Downregulation of a Chitin Deacetylase-Like Protein in Response to Baculovirus Infection and Its Application for Improving Baculovirus Infectivity , 2009, Journal of Virology.

[23]  R. Beeman,et al.  Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. , 2009, Insect biochemistry and molecular biology.

[24]  S. Verjovski-Almeida,et al.  The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins , 2009, Insect molecular biology.

[25]  D. Hegedus,et al.  A chitin deacetylase and putative insect intestinal lipases are components of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix , 2008, Insect molecular biology.

[26]  Pier Luigi Martelli,et al.  PredGPI: a GPI-anchor predictor , 2008, BMC Bioinformatics.

[27]  T. Härd,et al.  A Potential Role for Drosophila Mucins in Development and Physiology , 2008, PloS one.

[28]  R. Beeman,et al.  Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. , 2008, Insect biochemistry and molecular biology.

[29]  G. Kergoat,et al.  Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae). , 2007, Molecular phylogenetics and evolution.

[30]  M. Sorgine,et al.  Adaptations against heme toxicity in blood-feeding arthropods. , 2006, Insect biochemistry and molecular biology.

[31]  R. Beeman,et al.  The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix , 2005, Insect molecular biology.

[32]  T. Congiu,et al.  AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. , 2004, Insect biochemistry and molecular biology.

[33]  A. Ghosh,et al.  The peritrophic matrix limits the rate of digestion in adult Anopheles stephensi and Aedes aegypti mosquitoes. , 2003, Journal of insect physiology.

[34]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[35]  M. Jacobs-Lorena,et al.  Aedes aegypti peritrophic matrix and its interaction with heme during blood digestion. , 2002, Insect Biochemistry and Molecular Biology.

[36]  W. Terra The origin and functions of the insect peritrophic membrane and peritrophic gel. , 2001, Archives of insect biochemistry and physiology.

[37]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[38]  R. Tellam,et al.  Peritrophic matrix proteins. , 1999, Insect biochemistry and molecular biology.

[39]  R. Dallai,et al.  Ultrastructure of the midgut and the adhering tubular salivary glands of Frankliniella occidentalis (Pergande) (Thysanoptera : Thripidae) , 1991 .

[40]  M. L. Macedo,et al.  Poor correlation between the levels of proteinase inhibitors found in seeds of different cultivars of cowpea (Vigna unguiculata) and the resistance/susceptibility to predation by Callosobruchus maculatus , 1989 .

[41]  W. Peters,et al.  Aminopeptidases as immobilized enzymes on the peritrophic membranes of insects , 1985 .

[42]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[43]  N. Lane,et al.  An unusual cell surface modification: a double plasma membrane. , 1979, Journal of cell science.

[44]  M. Burgos,et al.  The intestine of Triatoma infestans. I. Cytology of the midgut. , 1976, Journal of ultrastructure research.

[45]  S. Spicer,et al.  THE HISTOCHEMISTRY OF SIALIC ACID CONTAINING MUCOPROTEINS , 1960, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[46]  W. Terra,et al.  Molecular physiology of insect midgut , 2019, Advances in Insect Physiology.

[47]  W. Terra,et al.  The digestive system of the leafhopper Bucephalogonia xanthophis (hemiptera, cicadellidae): the organization of the luminal membrane complex , 2016 .

[48]  D. Hegedus,et al.  New insights into peritrophic matrix synthesis, architecture, and function. , 2009, Annual review of entomology.

[49]  W. Terra,et al.  Digestive enzyme compartmentalization and recycling and sites of absorption and secretion along the midgut of Dermestes maculatus (Coleoptera) larvae. , 2007, Archives of insect biochemistry and physiology.

[50]  D. Luthe,et al.  Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. , 2006, Journal of insect physiology.

[51]  W. Peters,et al.  Electron microscopic localization of chitin using colloidal gold labelled with wheat germ agglutinin , 2004, Histochemistry.

[52]  Y. Rahbé,et al.  Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. , 2003, Journal of insect physiology.

[53]  M. F. Grossi-de-Sá,et al.  Vicilins (7S storage globulins) of cowpea (Vigna unguiculata) seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera: Bruchidae) larvae. , 2001, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[54]  W. Terra Evolution of Digestive Systems of Insects , 1990 .

[55]  W. Terra,et al.  Physiology and biochemistry of insect digestion: an evolutionary perspective. , 1988, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[56]  J. Williamson,et al.  Dietary modulation and histochemical localization of leucine aminopeptidase activity in Drosophila melanogaster larvae , 1980 .

[57]  W. Terra,et al.  Distribution of digestive enzymes among the endo- and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance , 1979 .