High Degree Graphs Contain Large-Star Factors

We show that any finite simple graph with minimum degree d contains a spanning star forest in which every connected component is of size at leastΩ((d/ log d)1/3). This settles a problem of Havet, Klazar, Kratochvil, Kratsch and Liedloff.

[1]  Jan Kratochvíl,et al.  Exact Algorithms for L(2,1)-Labeling of Graphs , 2009, Algorithmica.

[2]  Jerrold R. Griggs,et al.  Spanning trees in graphs of minimum degree 4 or 5 , 1992, Discret. Math..

[3]  Nicholas C. Wormald,et al.  3-star Factors in Random D-regular Graphs , 2006, Eur. J. Comb..

[4]  Noga Alon,et al.  A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.

[5]  Paul D. Seymour,et al.  Spanning trees with many leaves , 2001, J. Graph Theory.

[6]  Noga Alon,et al.  The Probabilistic Method, Third Edition , 2008, Wiley-Interscience series in discrete mathematics and optimization.

[7]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[8]  Raphael Yuster,et al.  Connected Domination and Spanning Trees with Many Leaves , 2000, SIAM J. Discret. Math..

[9]  Bruce A. Reed,et al.  Star arboricity , 1992, Comb..

[10]  N. Wormald,et al.  Models of the , 2010 .

[11]  N. Alon Tools from higher algebra , 1996 .

[12]  József Beck,et al.  An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.

[13]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .